Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Guichardet, Alain (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 1972
Schriftenreihe:Lecture notes in mathematics 261
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV003006855
003 DE-604
005 20100204
007 t
008 900725s1972 |||| 00||| eng d
020 |a 3540058036  |9 3-540-05803-6 
020 |a 9783540058038  |9 978-3-540-05803-8 
020 |a 0387058036  |9 0-387-05803-6 
035 |a (OCoLC)721195055 
035 |a (DE-599)BVBBV003006855 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-384  |a DE-91G  |a DE-355  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-706  |a DE-634  |a DE-11  |a DE-188  |a DE-83  |a DE-210 
050 0 |a QA3 
082 0 |a 510/.8 
082 0 |a 515/.73 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a 46C10  |2 msc 
100 1 |a Guichardet, Alain  |e Verfasser  |4 aut 
245 1 0 |a Symmetric Hilbert spaces and related topics  |b infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes  |c Alain Guichardet 
264 1 |a Berlin [u.a.]  |b Springer  |c 1972 
300 |a V, 197 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 261 
650 4 |a Hilbert, Espace de 
650 7 |a Hilbertruimten  |2 gtt 
650 4 |a Processus gaussiens 
650 4 |a Produits tensoriels 
650 7 |a Symmetrische ruimten  |2 gtt 
650 4 |a Gaussian processes 
650 4 |a Hilbert space 
650 4 |a Positive-definite functions 
650 4 |a Tensor products 
650 0 7 |a Hilbert-Raum  |0 (DE-588)4159850-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Hilbert-Raum  |0 (DE-588)4159850-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 1 |5 DE-604 
830 0 |a Lecture notes in mathematics  |v 261  |w (DE-604)BV000676446  |9 261 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001882369&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |q HUB-ZB011200907 
999 |a oai:aleph.bib-bvb.de:BVB01-001882369 
980 4 |a (DE-12)AK08740436 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 001z 2001 B 999-261
DE-BY-TUM_katkey 487648
DE-BY-TUM_media_number 040020179684
_version_ 1816711536625844224
adam_text Table of Content Introduction 1 Chapter 1. The symmetric measure space of a measure space. ... 3 1.1. The symmetric set of a set 3 1.2. The functor S on the category of sets 4 1.3. The symmetric Borel space of a Borel space ... 6 1.4. The symmetric measure space of a measure space . 7 1.5. Application to linear processes and factored probability spaces 12 Chapter 2. The symmetric Hilbert space of a Hilbert space. ... 18 2.1. Definitions and general properties ....... 18 2.2. The unitary operators U. ^ and the groupS-u. . 22 A. f D f C q rl 2.3. Relation with symmetric measure spaces 28 Chapter 3. Positive definite functions of type (S) 30 3.1. Positive definite functions 30 3.2. Positive definite functions of type (S). Definitions and first properties 35 3.3. The case of commutative locally compact groups . 38 Chapter 4. Conditionally positive definite functions and infi¬ nitely divisible positive definite functions 47 4.1. Conditionally positive definite matrices and kernels 47 4.2. Conditionally positive definite functions on groups 50 4.3. Infinitely divisible positive definite functions 56 Chapter 5. Boolean Algebras of tensor decompositions of a Hilbert space 62 Chapter 6. Pactorizable positive definite functions on current groups 80 6.1. Definitions 80 6.2. Results 82 6.3. Study of other current groups 90 Chapter 7. Gaussian measures on topological vector spaces. ... 93 7.1. Definitions and general properties 93 7.2. Relation with symmetric Hilbert spaces 96 7.3. Examples of Gaussian measures 100 7.4. The Wiener transform 103 7.5. Equivalence of Gaussian measures 105 IV 7.6. Quasi-invariance of Gaussian measures with respect to translations 112 7.7. Ergodicity of Gaussian measures with respect to rotations 115 Chapter 8. Continuous products 120 8.1. Introduction 120 8.2. Continuous products of complex numbers 121 8.3. Continuous tensor products of Hilbert spaces. . 126 8.4. Continuous tensor products of symmetric Hilbert spaces 133 8.5. Continuous products of measure spaces 136 Appendix A. Infinite tensor products of Hilbert spaces 148 A.1. Definitions 148 A.2. Associativity and commutativity 149 A.3. Decomposable vectors 150 A.4. Tensor products of operators 153 Appendix B. Cohomology of groups 154 B.1. General definitions 154 B.2. Study of Z in the case of a unitary representation. . 154 Appendix C. Boolean algebras 157 C.1. General properties 157 C.2. tf -additive and d -multiplicative functions 160 C.3- Multiplicative measures 162 Appendix D. Restricted products of sets and measures 163 D.1. Restricted products of sets and Borel spaces 163 D.2. Measure spaces 165 D.3- Restricted products of measure spaces 166 Appendix E. Gaussian and Poissonian measures and processes. . . 168 E.1. Gaussian measures on Rn 168 E.2. Poissonian measures on R 169 E.3. Stochastic processes 169 Appendix F. Canonical commutation relations 172 Appendix G. Measures on topological vector spaces 174 G.1. General properties 174 G.2. Relation with linear stochastic processes 177 Appendix H. Conditional expectations and martingale theorem . . 179 H.1. Conditional expectations 179 H.2. The martingale theorem 180 H.3. Hellinger integrals and equivalence of measures. ... 180 Appendix I. Desintegration of continuous cocycles 182 V Notation index 188 Terminological index 190 Bibliography 194
any_adam_object 1
author Guichardet, Alain
author_facet Guichardet, Alain
author_role aut
author_sort Guichardet, Alain
author_variant a g ag
building Verbundindex
bvnumber BV003006855
callnumber-first Q - Science
callnumber-label QA3
callnumber-raw QA3
callnumber-search QA3
callnumber-sort QA 13
callnumber-subject QA - Mathematics
classification_rvk SI 850
SK 600
ctrlnum (OCoLC)721195055
(DE-599)BVBBV003006855
dewey-full 510/.8
515/.73
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
515 - Analysis
dewey-raw 510/.8
515/.73
dewey-search 510/.8
515/.73
dewey-sort 3510 18
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02262nam a2200589 cb4500</leader><controlfield tag="001">BV003006855</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1972 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540058036</subfield><subfield code="9">3-540-05803-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540058038</subfield><subfield code="9">978-3-540-05803-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387058036</subfield><subfield code="9">0-387-05803-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)721195055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003006855</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.73</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46C10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guichardet, Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetric Hilbert spaces and related topics</subfield><subfield code="b">infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes</subfield><subfield code="c">Alain Guichardet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">V, 197 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">261</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert, Espace de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbertruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus gaussiens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Produits tensoriels</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetrische ruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive-definite functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor products</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">261</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">261</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001882369&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">HUB-ZB011200907</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001882369</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK08740436</subfield></datafield></record></collection>
id DE-604.BV003006855
illustrated Not Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 3540058036
9783540058038
0387058036
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001882369
oclc_num 721195055
open_access_boolean
owner DE-12
DE-384
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-634
DE-11
DE-188
DE-83
DE-210
owner_facet DE-12
DE-384
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-634
DE-11
DE-188
DE-83
DE-210
physical V, 197 S.
psigel HUB-ZB011200907
publishDate 1972
publishDateSearch 1972
publishDateSort 1972
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Guichardet, Alain
Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes
Lecture notes in mathematics
Hilbert, Espace de
Hilbertruimten gtt
Processus gaussiens
Produits tensoriels
Symmetrische ruimten gtt
Gaussian processes
Hilbert space
Positive-definite functions
Tensor products
Hilbert-Raum (DE-588)4159850-7 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
subject_GND (DE-588)4159850-7
(DE-588)4018916-8
title Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes
title_auth Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes
title_exact_search Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes
title_full Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes Alain Guichardet
title_fullStr Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes Alain Guichardet
title_full_unstemmed Symmetric Hilbert spaces and related topics infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes Alain Guichardet
title_short Symmetric Hilbert spaces and related topics
title_sort symmetric hilbert spaces and related topics infinitely divisible positive definite functions continuous products and tensor products gaussian and poissonian stochastic processes
title_sub infinitely divisible positive definite functions, continuous products and tensor products, Gaussian and Poissonian stochastic processes
topic Hilbert, Espace de
Hilbertruimten gtt
Processus gaussiens
Produits tensoriels
Symmetrische ruimten gtt
Gaussian processes
Hilbert space
Positive-definite functions
Tensor products
Hilbert-Raum (DE-588)4159850-7 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
topic_facet Hilbert, Espace de
Hilbertruimten
Processus gaussiens
Produits tensoriels
Symmetrische ruimten
Gaussian processes
Hilbert space
Positive-definite functions
Tensor products
Hilbert-Raum
Funktionalanalysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001882369&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT guichardetalain symmetrichilbertspacesandrelatedtopicsinfinitelydivisiblepositivedefinitefunctionscontinuousproductsandtensorproductsgaussianandpoissonianstochasticprocesses