Real and complex analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rudin, Walter 1921-2010 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] McGraw-Hill 1974
Ausgabe:2. ed.
Schriftenreihe:McGraw-Hill series in higher mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV002281259
003 DE-604
005 20080411
007 t|
008 890928s1974 xx |||| 00||| eng d
020 |a 0070542333  |9 0-07-054233-3 
035 |a (OCoLC)704861 
035 |a (DE-599)BVBBV002281259 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-188  |a DE-83 
050 0 |a QA303 
082 0 |a 515  |2 19 
084 |a SK 400  |0 (DE-625)143237:  |2 rvk 
084 |a 26-01  |2 msc 
084 |a 28-01  |2 msc 
084 |a 00A05  |2 msc 
100 1 |a Rudin, Walter  |d 1921-2010  |e Verfasser  |0 (DE-588)119445670  |4 aut 
245 1 0 |a Real and complex analysis  |c Walter Rudin 
250 |a 2. ed. 
264 1 |a New York [u.a.]  |b McGraw-Hill  |c 1974 
300 |a XII, 452 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a McGraw-Hill series in higher mathematics 
650 7 |a Analyse (wiskunde)  |2 gtt 
650 4 |a Analyse mathématique 
650 4 |a Análisis matemático 
650 4 |a Mathematical analysis 
650 0 7 |a Funktionentheorie  |0 (DE-588)4018935-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Reelle Analysis  |0 (DE-588)4627581-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Analysis  |0 (DE-588)4001865-9  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Funktionentheorie  |0 (DE-588)4018935-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Analysis  |0 (DE-588)4001865-9  |D s 
689 1 |5 DE-604 
689 2 0 |a Reelle Analysis  |0 (DE-588)4627581-2  |D s 
689 2 |8 2\p  |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001499112&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-001499112 

Datensatz im Suchindex

DE-19_call_number 1601/SK 400 R916 R3(2)+2
1601/SK 400 R916 R3(2)
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 260f 2001 A 29651(2)
DE-BY-TUM_katkey 378427
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010698261
040010374511
DE-BY-UBM_katkey 2198909
DE-BY-UBM_media_number 41637125740015
41601508430010
_version_ 1823051860261470208
adam_text CONTENTS Preface xi Prologue: The Exponential Function 1 1 Abstract Integration 5 Set-theoretic notations and terminology 6 The concept of measurability 8 Simple functions 16 Elementary properties of measures 17 Arithmetic in [0, oo] 19 Integration of positive functions 20 Integration of complex functions 25 The role played by sets of measure zero 28 Exercises 32 2 Positive Borel Measures 34 Vector spaces 34 Topological preliminaries 36 The Riesz representation theorem 42 Regularity properties of Borel measures 49 Lebesgue measure 51 Continuity properties of measurable functions 56 Exercises 58 VI CONTENTS 3 // -Spaces 62 Convex functions and inequalities 62 The .//-spaces 66 Approximation by continuous functions 71 Exercises 73 4 Elementary Hilbert Space Theory 79 Inner products and linear functionals 79 Orthonormal sets 86 Trigonometric series 92 Exercises 97 5 Examples of Banach Space Techniques 100 Banach spaces 100 Consequences of Baire s theorem 102 Fourier series of continuous functions 106 Fourier coefficients of L -functions 109 The Hahn-Banach theorem 111 An abstract approach to the Poisson integral 115 Exercises 119 6 Complex Measures 124 Total variation 124 Absolute continuity 128 Consequences of the Radon-Nikodym theorem 133 Bounded linear functionals on II 135 The Riesz representation theorem 138 Exercises 142 7 Integration on Product Spaces 145 Measurability on cartesian products 145 Product measures 148 The Fubini theorem 150 Completion of product measures 153 Convolutions 155 Exercises 157 8 Differentiation 162 Derivatives of measures 162 Functions of bounded variation 171 Differentiation of point functions 175 CONTENTS vii Differentiable transformations 181 Exercises 188 9 Fourier Transforms 192 Formal properties 192 The inversion theorem 195 The Plancherel theorem 200 The Banach algebra D 205 Exercises 208 10 Elementary Properties of Holomorphic Functions 212 Complex differentiation 212 Integration over paths 217 The local Cauchy theorem 221 The power series representation 225 The open mapping theorem 231 The global Cauchy theorem 233 The calculus of residues 241 Exercises 244 11 Harmonic Functions 250 The Cauchy-Riemann equations 250 The Poisson integral 252 The mean value property 259 Positive harmonic functions 261 Exercises 266 12 The Maximum Modulus Principle 270 Introduction 270 The Schwarz lemma 271 The Phragmen-Lindelof method 273 An interpolation theorem 277 A converse of the maximum modulus theorem 279 Exercises 281 13 Approximation by Rational Functions 284 Preparation 284 Runge s theorem 288 The Mittag-Leffler theorem 291 Simply connected regions 292 Exercises 294 viii CONTENTS 14 Conformal Mapping 296 Preservation of angles 296 Linear fractional transformations 298 Normal families 300 The Riemann mapping theorem 302 The class S 304 Continuity at the boundary 308 Conformal mapping of an annulus 311 Exercises 313 15 Zeros of Holomorphic Functions 320 Infinite products 320 The Weierstrass factorization theorem 323 An interpolation problem 327 Jensen s formula 329 Blaschke products 333 The Miintz-Szasz theorem 336 Exercises 339 16 Analytic Continuation 343 Regular points and singular points 343 Continuation along curves 347 The monodromy theorem 351 Construction of a modular function 352 The Picard theorem 356 Exercises 357 17 // -Spaces 361 Subharmonic functions 361 The spaces Hp and N 363 The space H2 365 The theorem of F. and M. Riesz 369 Factorization theorems 370 The shift operator 375 Conjugate functions 379 Exercises 382 18 Elementary Theory of Banach Algebras 386 Introduction 386 The invertible elements 387 Ideals and homomorphisms 392 CONTENTS IX Applications 396 Exercises 400 19 Holomorphic Fourier Transforms 403 Introduction 403 Two theorems of Paley and Wiener 405 Quasi-analytic classes 409 The Denjoy-Carleman theorem 412 Exercises 416 20 Uniform Approximation by Polynomials 419 Introduction 419 Some lemmas 420 Mergelyan s theorem 423 Exercises 427 Appendix: Hausdorff s Maximality Theorem 429 Notes and Comments 432 Bibliography 440 List of Special Symbols 443 Index 445
any_adam_object 1
author Rudin, Walter 1921-2010
author_GND (DE-588)119445670
author_facet Rudin, Walter 1921-2010
author_role aut
author_sort Rudin, Walter 1921-2010
author_variant w r wr
building Verbundindex
bvnumber BV002281259
callnumber-first Q - Science
callnumber-label QA303
callnumber-raw QA303
callnumber-search QA303
callnumber-sort QA 3303
callnumber-subject QA - Mathematics
classification_rvk SK 400
ctrlnum (OCoLC)704861
(DE-599)BVBBV002281259
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02065nam a2200553 c 4500</leader><controlfield tag="001">BV002281259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080411 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1974 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0070542333</subfield><subfield code="9">0-07-054233-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002281259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA303</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">28-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rudin, Walter</subfield><subfield code="d">1921-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119445670</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real and complex analysis</subfield><subfield code="c">Walter Rudin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 452 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">McGraw-Hill series in higher mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Análisis matemático</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001499112&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001499112</subfield></datafield></record></collection>
genre 1\p (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV002281259
illustrated Not Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 0070542333
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001499112
oclc_num 704861
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-188
DE-83
owner_facet DE-91G
DE-BY-TUM
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-188
DE-83
physical XII, 452 S.
publishDate 1974
publishDateSearch 1974
publishDateSort 1974
publisher McGraw-Hill
record_format marc
series2 McGraw-Hill series in higher mathematics
spellingShingle Rudin, Walter 1921-2010
Real and complex analysis
Analyse (wiskunde) gtt
Analyse mathématique
Análisis matemático
Mathematical analysis
Funktionentheorie (DE-588)4018935-1 gnd
Reelle Analysis (DE-588)4627581-2 gnd
Analysis (DE-588)4001865-9 gnd
subject_GND (DE-588)4018935-1
(DE-588)4627581-2
(DE-588)4001865-9
(DE-588)4123623-3
title Real and complex analysis
title_auth Real and complex analysis
title_exact_search Real and complex analysis
title_full Real and complex analysis Walter Rudin
title_fullStr Real and complex analysis Walter Rudin
title_full_unstemmed Real and complex analysis Walter Rudin
title_short Real and complex analysis
title_sort real and complex analysis
topic Analyse (wiskunde) gtt
Analyse mathématique
Análisis matemático
Mathematical analysis
Funktionentheorie (DE-588)4018935-1 gnd
Reelle Analysis (DE-588)4627581-2 gnd
Analysis (DE-588)4001865-9 gnd
topic_facet Analyse (wiskunde)
Analyse mathématique
Análisis matemático
Mathematical analysis
Funktionentheorie
Reelle Analysis
Analysis
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001499112&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT rudinwalter realandcomplexanalysis