Axiomatic set theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bernays, Paul 1888-1977 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam North-Holland 1968
Ausgabe:2. ed.
Schriftenreihe:Studies on logic and the foundations of mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV002280556
003 DE-604
005 20141215
007 t|
008 890928s1968 xx |||| 00||| eng d
035 |a (OCoLC)96775 
035 |a (DE-599)BVBBV002280556 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G  |a DE-703  |a DE-739  |a DE-355  |a DE-824  |a DE-29T  |a DE-19  |a DE-706  |a DE-83  |a DE-188 
050 0 |a QA248 
082 0 |a 512/.817 
084 |a CC 2600  |0 (DE-625)17610:  |2 rvk 
084 |a QH 120  |0 (DE-625)141532:  |2 rvk 
084 |a SK 130  |0 (DE-625)143216:  |2 rvk 
084 |a SK 150  |0 (DE-625)143218:  |2 rvk 
084 |a SK 155  |0 (DE-625)143219:  |2 rvk 
084 |a 03E30  |2 msc 
084 |a 04-01  |2 msc 
100 1 |a Bernays, Paul  |d 1888-1977  |e Verfasser  |0 (DE-588)11865845X  |4 aut 
245 1 0 |a Axiomatic set theory  |c Paul Bernays. With a historical introduction by Abraham A. Fraenkel 
250 |a 2. ed. 
264 1 |a Amsterdam  |b North-Holland  |c 1968 
300 |a VIII, 227 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Studies on logic and the foundations of mathematics 
650 4 |a Ensembles, Théorie des 
650 4 |a Axiomatic set theory 
650 0 7 |a Mengenlehre  |0 (DE-588)4074715-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Axiomatik  |0 (DE-588)4004038-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Axiomatische Mengenlehre  |0 (DE-588)4143743-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 0 1 |a Axiomatik  |0 (DE-588)4004038-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Axiomatische Mengenlehre  |0 (DE-588)4143743-3  |D s 
689 1 |5 DE-604 
689 2 0 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 2 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001498582&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-001498582 

Datensatz im Suchindex

DE-19_call_number 0100/CC 2600 B524
1601/SK 150 B524(2)
DE-19_location 95
10
DE-BY-TUM_call_number 0102 MAT 040f 2001 A 7475
DE-BY-TUM_katkey 377871
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010595007
040010330951
DE-BY-UBM_katkey 2199352
DE-BY-UBM_local_call_number 1601/LB MATH Ber 8827=Lehrbuchsammlung
DE-BY-UBM_local_notation LB
DE-BY-UBM_media_number 41606197290014
41601546240010
DE-BY-UBR_call_number 00/SK 150 B524(2)
80/SK 150 B524(2)
DE-BY-UBR_katkey 489429
DE-BY-UBR_location 00
80
DE-BY-UBR_media_number 069033424397
069007622290
_version_ 1823051860344307712
adam_text CONTENTS Preface v PART I. HISTORICAL INTRODUCTION 1. Introductory Remarks 3 2. Zermelo s Si stem. Equality and Extensionality 5 3. Constructive Axioms or General Set Theory 9 4. The Axiom op Choice 15 5. Axioms or Infinity and of Restriction 21 6. Development of Skt Theory from the Axioms of Z .... 26 7. Remarks on the Axiom Systems of von Neumann, Bernays, Godel 31 PART II. AXIOMATIC SET THEORY Introduction 39 Chapter I. The Frame of Looic and Class Theory 45 1. Predicate Calculus; Class Terms and Descriptions; Explicit Definitions 45 2. Equality and Extensionality. Application to Descriptions . 52 3. Class Formalism. Class Operations 56 4. Functionality and Mappings 61 Chapter II. The Start of General Set Theory 65 1. The Axioms of General Set Theory 65 2. Aussonderungstheorem. Intersection 69 3. Sum Theorem. Theorem of Replacement 72 4. Functional Sets. One to one Correspondences 76 Chapter III. Ordinals; Natural Numbers; Finite Sets ... 80 1. Fundaments of the Theory of Ordinals 80 2. Existential Statements on Ordinals. Limit Numbers .... 86 3. Fundaments of Number Theory 89 4. Iteration. Primitive Recursion 92 5. Finite Sets and Classes 97 Chapter IV. Transfinite Recursion 100 1. The General Recursion Theorem 100 2. The Schema of Transfinite Recursion 104 3. Generated Numeration 109 vm CONTENTS Chapter V. Power; Ordeb; Wellorder 114 1. Comparison of Powers 114 2. Order and Partial Order 118 3. Wellorder 124 Chapter VI. The Completing Axioms 130 1. The Potency Axiom 130 2. The Axiom of Choice 133 3. The Numeration Theorem. First Concepts of Cardinal Arith¬ metic 138 4. Zorn s Lemma and Related Principles 142 5. Axiom of Infinity. Denumerability 147 Chapter VII. Analysis; Cardinal Arithmetic; Abstract Theories 155 1. Theory of Real Numbers 155 2. Some Topics of Ordinal Arithmetic 164 3. Cardinal Operations 173 4. Formal Laws on Cardinals 179 5. Abstract Theories 188 Chapter VIII. Further Strengthening of the Axiom System 195 1. A Strengthening of the Axiom of Choice 195 2. The Fundierungsaxiom 200 3. A one to one Correspondence between the Class of Ordinals and the Class of all Sets 203 Index of Authors (Part I) 211 Index of Symbols (Part II) 213 Predicates 213 Functors and Operators 214 Primitive Symbols 215 Index of matters (Part II) 216 List of axioms (Part II) 218 Bibliography (Part I and II) 219
any_adam_object 1
author Bernays, Paul 1888-1977
author_GND (DE-588)11865845X
author_facet Bernays, Paul 1888-1977
author_role aut
author_sort Bernays, Paul 1888-1977
author_variant p b pb
building Verbundindex
bvnumber BV002280556
callnumber-first Q - Science
callnumber-label QA248
callnumber-raw QA248
callnumber-search QA248
callnumber-sort QA 3248
callnumber-subject QA - Mathematics
classification_rvk CC 2600
QH 120
SK 130
SK 150
SK 155
ctrlnum (OCoLC)96775
(DE-599)BVBBV002280556
dewey-full 512/.817
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.817
dewey-search 512/.817
dewey-sort 3512 3817
dewey-tens 510 - Mathematics
discipline Mathematik
Philosophie
Wirtschaftswissenschaften
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02001nam a2200529 c 4500</leader><controlfield tag="001">BV002280556</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141215 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1968 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)96775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002280556</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.817</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 120</subfield><subfield code="0">(DE-625)141532:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 155</subfield><subfield code="0">(DE-625)143219:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03E30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">04-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bernays, Paul</subfield><subfield code="d">1888-1977</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11865845X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Axiomatic set theory</subfield><subfield code="c">Paul Bernays. With a historical introduction by Abraham A. Fraenkel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 227 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies on logic and the foundations of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiomatic set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001498582&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001498582</subfield></datafield></record></collection>
id DE-604.BV002280556
illustrated Not Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001498582
oclc_num 96775
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-703
DE-739
DE-355
DE-BY-UBR
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-83
DE-188
owner_facet DE-91G
DE-BY-TUM
DE-703
DE-739
DE-355
DE-BY-UBR
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-83
DE-188
physical VIII, 227 S.
publishDate 1968
publishDateSearch 1968
publishDateSort 1968
publisher North-Holland
record_format marc
series2 Studies on logic and the foundations of mathematics
spellingShingle Bernays, Paul 1888-1977
Axiomatic set theory
Ensembles, Théorie des
Axiomatic set theory
Mengenlehre (DE-588)4074715-3 gnd
Axiomatik (DE-588)4004038-0 gnd
Axiomatische Mengenlehre (DE-588)4143743-3 gnd
subject_GND (DE-588)4074715-3
(DE-588)4004038-0
(DE-588)4143743-3
title Axiomatic set theory
title_auth Axiomatic set theory
title_exact_search Axiomatic set theory
title_full Axiomatic set theory Paul Bernays. With a historical introduction by Abraham A. Fraenkel
title_fullStr Axiomatic set theory Paul Bernays. With a historical introduction by Abraham A. Fraenkel
title_full_unstemmed Axiomatic set theory Paul Bernays. With a historical introduction by Abraham A. Fraenkel
title_short Axiomatic set theory
title_sort axiomatic set theory
topic Ensembles, Théorie des
Axiomatic set theory
Mengenlehre (DE-588)4074715-3 gnd
Axiomatik (DE-588)4004038-0 gnd
Axiomatische Mengenlehre (DE-588)4143743-3 gnd
topic_facet Ensembles, Théorie des
Axiomatic set theory
Mengenlehre
Axiomatik
Axiomatische Mengenlehre
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001498582&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bernayspaul axiomaticsettheory