Vector analysis and Cartesian tensors

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bourne, Donald E. (VerfasserIn), Kendall, Peter C. 1934- (VerfasserIn)
Format: Buch
Sprache:Undetermined
Veröffentlicht: New York Jovanovich 1977
Ausgabe:2. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV002253032
003 DE-604
005 19900129
007 t|
008 890928s1977 xx d||| |||| 00||| und d
020 |a 0121190501  |9 0-12-119050-1 
035 |a (OCoLC)251501865 
035 |a (DE-599)BVBBV002253032 
040 |a DE-604  |b ger  |e rakddb 
041 |a und 
049 |a DE-91  |a DE-355  |a DE-29T  |a DE-188 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
100 1 |a Bourne, Donald E.  |e Verfasser  |4 aut 
245 1 0 |a Vector analysis and Cartesian tensors  |c Donald E. Bourne ; Peter C. Kendall* 
250 |a 2. ed. 
264 1 |a New York  |b Jovanovich  |c 1977 
300 |a IX, 256 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Tensoranalysis  |0 (DE-588)4204323-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Vektoranalysis  |0 (DE-588)4191992-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Tensoranalysis  |0 (DE-588)4204323-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Vektoranalysis  |0 (DE-588)4191992-0  |D s 
689 1 |5 DE-604 
700 1 |a Kendall, Peter C.  |d 1934-  |e Verfasser  |0 (DE-588)122368576  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001480486&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-001480486 

Datensatz im Suchindex

DE-BY-TUM_call_number 0834 MA.86
DE-BY-TUM_katkey 358674
DE-BY-TUM_location LSB
DE-BY-TUM_media_number TEMP3131534
_version_ 1820853677090406400
adam_text CONTENTS Preface Chapter 1 Rectangular Cartesian Coordinates and Rotation of Axes 1.1 Rectangular cartesian coordinates 1 1.2 Direction cosines and direction ratios 5 1.3 Angles between lines through the origin 6 1.4 The orthogonal projection of one line on another 7 1.5 Rotation of axes 9 1.6 The summation convention and its use 13 1.7 Invariance with respect to a rotation of the axes 16 1.8 Matrix notation 17 Chapter 2 Scalar and Vector Algebra 2.1 Scalars 18 2.2 Vectors: basic notions 19 2.3 Multiplication of a vector by a scalar 24 2.4 Addition and subtraction of vectors 27 2.5 The unit vectors i, j, k 31 2.6 Scalar products 31 2.7 Vector products 36 2.8 The triple scalar product 43 2.9 The triple vector product 46 2.10 Products of four vectors 47 2.11 Bound vectors 47 Chapter 3 Vector Functions of a Real Variable. Differential Geometry of Curves 3.1 Vector functions and their geometrical representation 49 3.2 Differentiation of vectors 53 3.3 Differentiation rules 55 3.4 The tangent to a curve. Smooth, piecewise smooth, and simple curves 56 3.5 Arc length 61 3.6 Curvature and torsion 63 3.7 Applications in kinematics 67 viii CONTENTS Chapter 4 Scalar and Vector Fields 4.1 Regions 72 4.2 Functions of several variables 73 4.3 Definitions of scalar and vector fields 78 4.4 Gradient of a scalar field 78 4.5 Properties of gradient 81 4.6 The divergence and curl of a vector field 85 4.7 The del operator 87 4.8 Scalar invariant operators 91 4.9 Useful identities 94 4.10 Cylindrical and spherical polar coordinates 98 4.11 General orthogonal curvilinear coordinates 102 4.12 Vector components in orthogonal curvilinear coordinates 107 4.13 Expressions for grad Q, div F, curl F, and V2 in orthogonal curvilinear coordinates 109 4.14 Vector analysis in w dimensional space 115 Chapter 5 Line, Surface, and Volume Integrals 5.1 Line integral of a scalar field 116 5.2 Line integrals of a vector field 121 5.3 Repeated integrals 123 5.4 Double and triple integrals 125 5.5 Surfaces 138 5.6 Surface integrals 147 5.7 Volume integrals 154 Chapter 6 Integral Theorems 6.1 Introduction 159 6.2 The Divergence Theorem (Gauss s theorem) 159 6.3 Green s theorems 168 6.4 Stokes s theorem 172 6.5 Limit definitions of div F and curl F 182 6.6 Geometrical and physical significance of divergence and curl 183 Chapter 7 Applications in Potential Theory 7.1 Connectivity 186 7.2 The scalar potential 187 7.3 The vector potential 190 7.4 Poisson s equation 193 CONTENTS ix 7.5 Poisson s equation in vector form 198 7.6 Helmholtz s theorem 198 7.7 Solid angles 199 Chapter 8 Cartesian Tensors 8.1 Introduction 204 8.2 Cartesian tensors: basic algebra 205 8.3 Isotropic tensors 210 8.4 Tensor fields 218 8.5 The divergence theorem in tensor field theory 222 Chapter 9 Representation Theorems for Isotropic Tensor Functions 9.1 Introduction 224 9.2 Diagonalization of second order symmetrical tensors 225 9.3 Invariants of second order symmetrical tensors 229 9.4 Representation of isotropic vector functions 231 9.5 Isotropic scalar functions of symmetrical second order tensors 233 9.6 Representation of an isotropic tensor function 235 Appendix 1 Determinants 239 Appendix 2 The chain rule for Jacobians 241 Appendix 3 Expressions for grad, div, curl, and V2 in cylindri¬ cal and spherical polar coordinates 242 Answers to Exercises 243 Index 251
any_adam_object 1
author Bourne, Donald E.
Kendall, Peter C. 1934-
author_GND (DE-588)122368576
author_facet Bourne, Donald E.
Kendall, Peter C. 1934-
author_role aut
aut
author_sort Bourne, Donald E.
author_variant d e b de deb
p c k pc pck
building Verbundindex
bvnumber BV002253032
classification_rvk SK 370
ctrlnum (OCoLC)251501865
(DE-599)BVBBV002253032
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01424nam a2200373 c 4500</leader><controlfield tag="001">BV002253032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19900129 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1977 xx d||| |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0121190501</subfield><subfield code="9">0-12-119050-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)251501865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002253032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bourne, Donald E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vector analysis and Cartesian tensors</subfield><subfield code="c">Donald E. Bourne ; Peter C. Kendall*</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Jovanovich</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 256 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensoranalysis</subfield><subfield code="0">(DE-588)4204323-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektoranalysis</subfield><subfield code="0">(DE-588)4191992-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tensoranalysis</subfield><subfield code="0">(DE-588)4204323-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Vektoranalysis</subfield><subfield code="0">(DE-588)4191992-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kendall, Peter C.</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122368576</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001480486&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001480486</subfield></datafield></record></collection>
id DE-604.BV002253032
illustrated Illustrated
indexdate 2024-12-23T10:33:15Z
institution BVB
isbn 0121190501
language Undetermined
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001480486
oclc_num 251501865
open_access_boolean
owner DE-91
DE-BY-TUM
DE-355
DE-BY-UBR
DE-29T
DE-188
owner_facet DE-91
DE-BY-TUM
DE-355
DE-BY-UBR
DE-29T
DE-188
physical IX, 256 S. graph. Darst.
publishDate 1977
publishDateSearch 1977
publishDateSort 1977
publisher Jovanovich
record_format marc
spellingShingle Bourne, Donald E.
Kendall, Peter C. 1934-
Vector analysis and Cartesian tensors
Tensoranalysis (DE-588)4204323-2 gnd
Vektoranalysis (DE-588)4191992-0 gnd
subject_GND (DE-588)4204323-2
(DE-588)4191992-0
title Vector analysis and Cartesian tensors
title_auth Vector analysis and Cartesian tensors
title_exact_search Vector analysis and Cartesian tensors
title_full Vector analysis and Cartesian tensors Donald E. Bourne ; Peter C. Kendall*
title_fullStr Vector analysis and Cartesian tensors Donald E. Bourne ; Peter C. Kendall*
title_full_unstemmed Vector analysis and Cartesian tensors Donald E. Bourne ; Peter C. Kendall*
title_short Vector analysis and Cartesian tensors
title_sort vector analysis and cartesian tensors
topic Tensoranalysis (DE-588)4204323-2 gnd
Vektoranalysis (DE-588)4191992-0 gnd
topic_facet Tensoranalysis
Vektoranalysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001480486&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bournedonalde vectoranalysisandcartesiantensors
AT kendallpeterc vectoranalysisandcartesiantensors