Non-abelian minimal closed ideals of transitive Lie algebras

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Conn, Jack F. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Princeton, NJ Princeton Univ. Press 1981
Schriftenreihe:Mathematical notes 25
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV002247418
003 DE-604
005 20090326
007 t
008 890928s1981 |||| 00||| eng d
020 |a 0691082510  |9 0-691-08251-0 
035 |a (OCoLC)5676425 
035 |a (DE-599)BVBBV002247418 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-91G  |a DE-384  |a DE-703  |a DE-739  |a DE-355  |a DE-29T  |a DE-19  |a DE-83  |a DE-188 
050 0 |a QA252.3 
082 0 |a 512/.55 
084 |a SI 870  |0 (DE-625)143208:  |2 rvk 
084 |a 17B20  |2 msc 
100 1 |a Conn, Jack F.  |e Verfasser  |4 aut 
245 1 0 |a Non-abelian minimal closed ideals of transitive Lie algebras  |c by Jack F. Conn 
264 1 |a Princeton, NJ  |b Princeton Univ. Press  |c 1981 
300 |a 220 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Mathematical notes  |v 25 
650 4 |a Idéaux (Algèbre) 
650 4 |a Lie, Algèbres de 
650 4 |a Pseudo-groupes (Mathématiques) 
650 4 |a Ideals (Algebra) 
650 4 |a Lie algebras 
650 4 |a Pseudogroups 
650 0 7 |a Ideal  |g Mathematik  |0 (DE-588)4161198-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Lie-Algebra  |0 (DE-588)4130355-6  |2 gnd  |9 rswk-swf 
655 7 |a Transitive Lie-Algebra  |2 gnd  |9 rswk-swf 
689 0 0 |a Transitive Lie-Algebra  |A f 
689 0 1 |a Ideal  |g Mathematik  |0 (DE-588)4161198-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Lie-Algebra  |0 (DE-588)4130355-6  |D s 
689 1 |5 DE-604 
689 2 0 |a Lie-Algebra  |0 (DE-588)4130355-6  |D s 
689 2 1 |a Ideal  |g Mathematik  |0 (DE-588)4161198-6  |D s 
689 2 |5 DE-604 
830 0 |a Mathematical notes  |v 25  |w (DE-604)BV000003793  |9 25 
999 |a oai:aleph.bib-bvb.de:BVB01-001476866 
980 4 |a (DE-12)AK04450247 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 173f 2001 A 10928
DE-BY-TUM_katkey 354866
DE-BY-TUM_media_number 040010686494
_version_ 1816711467021369344
any_adam_object
author Conn, Jack F.
author_facet Conn, Jack F.
author_role aut
author_sort Conn, Jack F.
author_variant j f c jf jfc
building Verbundindex
bvnumber BV002247418
callnumber-first Q - Science
callnumber-label QA252
callnumber-raw QA252.3
callnumber-search QA252.3
callnumber-sort QA 3252.3
callnumber-subject QA - Mathematics
classification_rvk SI 870
ctrlnum (OCoLC)5676425
(DE-599)BVBBV002247418
dewey-full 512/.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.55
dewey-search 512/.55
dewey-sort 3512 255
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01763nam a2200541 cb4500</leader><controlfield tag="001">BV002247418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090326 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1981 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691082510</subfield><subfield code="9">0-691-08251-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)5676425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002247418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 870</subfield><subfield code="0">(DE-625)143208:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conn, Jack F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian minimal closed ideals of transitive Lie algebras</subfield><subfield code="c">by Jack F. Conn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">220 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical notes</subfield><subfield code="v">25</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idéaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudo-groupes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudogroups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Transitive Lie-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transitive Lie-Algebra</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical notes</subfield><subfield code="v">25</subfield><subfield code="w">(DE-604)BV000003793</subfield><subfield code="9">25</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001476866</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK04450247</subfield></datafield></record></collection>
genre Transitive Lie-Algebra gnd
genre_facet Transitive Lie-Algebra
id DE-604.BV002247418
illustrated Not Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 0691082510
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001476866
oclc_num 5676425
open_access_boolean
owner DE-12
DE-91G
DE-BY-TUM
DE-384
DE-703
DE-739
DE-355
DE-BY-UBR
DE-29T
DE-19
DE-BY-UBM
DE-83
DE-188
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-384
DE-703
DE-739
DE-355
DE-BY-UBR
DE-29T
DE-19
DE-BY-UBM
DE-83
DE-188
physical 220 S.
publishDate 1981
publishDateSearch 1981
publishDateSort 1981
publisher Princeton Univ. Press
record_format marc
series Mathematical notes
series2 Mathematical notes
spellingShingle Conn, Jack F.
Non-abelian minimal closed ideals of transitive Lie algebras
Mathematical notes
Idéaux (Algèbre)
Lie, Algèbres de
Pseudo-groupes (Mathématiques)
Ideals (Algebra)
Lie algebras
Pseudogroups
Ideal Mathematik (DE-588)4161198-6 gnd
Lie-Algebra (DE-588)4130355-6 gnd
subject_GND (DE-588)4161198-6
(DE-588)4130355-6
title Non-abelian minimal closed ideals of transitive Lie algebras
title_auth Non-abelian minimal closed ideals of transitive Lie algebras
title_exact_search Non-abelian minimal closed ideals of transitive Lie algebras
title_full Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn
title_fullStr Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn
title_full_unstemmed Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn
title_short Non-abelian minimal closed ideals of transitive Lie algebras
title_sort non abelian minimal closed ideals of transitive lie algebras
topic Idéaux (Algèbre)
Lie, Algèbres de
Pseudo-groupes (Mathématiques)
Ideals (Algebra)
Lie algebras
Pseudogroups
Ideal Mathematik (DE-588)4161198-6 gnd
Lie-Algebra (DE-588)4130355-6 gnd
topic_facet Idéaux (Algèbre)
Lie, Algèbres de
Pseudo-groupes (Mathématiques)
Ideals (Algebra)
Lie algebras
Pseudogroups
Ideal Mathematik
Lie-Algebra
Transitive Lie-Algebra
volume_link (DE-604)BV000003793
work_keys_str_mv AT connjackf nonabelianminimalclosedidealsoftransitiveliealgebras