Equations over finite fields an elementary approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1976
|
Schriftenreihe: | Lecture notes in mathematics
536 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002243133 | ||
003 | DE-604 | ||
005 | 20080430 | ||
007 | t | ||
008 | 890928s1976 |||| 00||| eng d | ||
020 | |a 354007855X |9 3-540-07855-X | ||
020 | |a 038707855X |9 0-387-07855-X | ||
035 | |a (OCoLC)721423640 | ||
035 | |a (DE-599)BVBBV002243133 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91 |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512.9/4 | |
082 | 0 | |a 510/.8 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 10G05 |2 msc | ||
100 | 1 | |a Schmidt, Wolfgang M. |d 1933- |e Verfasser |0 (DE-588)136169627 |4 aut | |
245 | 1 | 0 | |a Equations over finite fields |b an elementary approach |c Wolfgang M. Schmidt |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1976 | |
300 | |a IX, 267 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 536 | |
650 | 4 | |a Analyse diophantienne | |
650 | 4 | |a Champs modulaires | |
650 | 4 | |a Diophantine analysis | |
650 | 4 | |a Finite fields (Algebra) | |
650 | 0 | 7 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 536 |w (DE-604)BV000676446 |9 536 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001474185&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001474185 | ||
980 | 4 | |a (DE-12)AK19620323 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102/MAT 001z 2001 B 999-536 |
---|---|
DE-BY-TUM_katkey | 352088 |
DE-BY-TUM_media_number | 040020162629 |
_version_ | 1816711465072066561 |
adam_text | Table of Contents
Chapter Page
Introduction 1
I. Equations yd = f(x) and yq - y = f(x)
1. Finite Fields 3
2. Equations y = f (x) 8
3. Construction of certain polynomials 16
4. Proof of the Main Theorem 21
5. Removal of the condition (m,d) =1 22
6. Hyperderivatives 27
2
7. Removal of the condition that q = p or p .... 31
8. The Work of Stark. . 32
9. Equations yq - y = f(x) 34
II. Character Suras and Exponential Sums
1. Characters of Finite Abelian Groups 38
2. Characters and Character Sums associated with
Finite Fields 41
3. Gaussian Sums 46
4. The low road 50
5. Systems of equations y 1 = f (x),...,y n =
Vx) 52
6. Auxiliary lemmas on »}*+... + (O^ 57
7. Further auxiliary lemmas 60
8. Zeta Function and L-Functions 62
9. Special L-Functions 65
10. Field extensions. The Davenport - Hasse relations . 72
11. Proof of the Principal Theorems 77
VIII
Chapter Page
12. Kloosterman Sums 84
13. Further Results 88
III. Absolutely Irreducible Equations f(x,y) = 0
1. Introduction 92
2. Independence results 97
3. Derivatives 105
4. Construction of two algebraic functions 107
5. Construction of two polynomials 114
6. Proof of the Main Theorem 116
7. Valuations 119
8. Hyperderivatives again 125
9. Removal of the condition that q = P 131
IV. Equations in Many Variables
1. Theorems of Chevalley and Warning 134
2. Quadratic forms 140
3. Elementary upper bounds. Projective zeros 147
4. The average number of zeros of a polynomial. . . . 157
5. Additive Equations: A Chebychev Argument 160
6. Additive Equations: Character Sums 166
7. Equations f1(y)x1 1l+.. .+fn(y)xndn = 0 173
V. Absolutely Irreducible Equations f(x , ...,x ) = 0
1. Elimination Theory 177
2. The absolute irreducibility of polynomials (I) . . 190
3. The absolute irreducibility of polynomials (II). . 194
4. The absolute irreducibility of polynomials (III) . 204
IX
Chapter Page
5. The number of zeros of absolutely irreducible
polynomials in n variables 210
VI. Rudiments of Algebraic Geometry. The Number of Points
in Varieties over Finite Fields
1. Varieties 216
2. Dimension 228
3. Rational Maps 235
4. Birational Maps 244
5. Linear Disjointness of Fields 250
6. Constant Field Extensions 254
7. Counting Points in Varieties Over Finite Fields. . 260
BIBLIOGRAPHY 265
|
any_adam_object | 1 |
author | Schmidt, Wolfgang M. 1933- |
author_GND | (DE-588)136169627 |
author_facet | Schmidt, Wolfgang M. 1933- |
author_role | aut |
author_sort | Schmidt, Wolfgang M. 1933- |
author_variant | w m s wm wms |
building | Verbundindex |
bvnumber | BV002243133 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)721423640 (DE-599)BVBBV002243133 |
dewey-full | 512.9/4 510/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512.9/4 510/.8 |
dewey-search | 512.9/4 510/.8 |
dewey-sort | 3512.9 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01727nam a2200457 cb4500</leader><controlfield tag="001">BV002243133</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080430 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1976 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354007855X</subfield><subfield code="9">3-540-07855-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038707855X</subfield><subfield code="9">0-387-07855-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)721423640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002243133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">10G05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmidt, Wolfgang M.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136169627</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equations over finite fields</subfield><subfield code="b">an elementary approach</subfield><subfield code="c">Wolfgang M. Schmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 267 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">536</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse diophantienne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Champs modulaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diophantine analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite fields (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">536</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">536</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001474185&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001474185</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK19620323</subfield></datafield></record></collection> |
id | DE-604.BV002243133 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:10:36Z |
institution | BVB |
isbn | 354007855X 038707855X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001474185 |
oclc_num | 721423640 |
open_access_boolean | |
owner | DE-12 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-83 DE-11 DE-188 |
owner_facet | DE-12 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-83 DE-11 DE-188 |
physical | IX, 267 S. |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spellingShingle | Schmidt, Wolfgang M. 1933- Equations over finite fields an elementary approach Lecture notes in mathematics Analyse diophantienne Champs modulaires Diophantine analysis Finite fields (Algebra) Diophantische Gleichung (DE-588)4012386-8 gnd |
subject_GND | (DE-588)4012386-8 |
title | Equations over finite fields an elementary approach |
title_auth | Equations over finite fields an elementary approach |
title_exact_search | Equations over finite fields an elementary approach |
title_full | Equations over finite fields an elementary approach Wolfgang M. Schmidt |
title_fullStr | Equations over finite fields an elementary approach Wolfgang M. Schmidt |
title_full_unstemmed | Equations over finite fields an elementary approach Wolfgang M. Schmidt |
title_short | Equations over finite fields |
title_sort | equations over finite fields an elementary approach |
title_sub | an elementary approach |
topic | Analyse diophantienne Champs modulaires Diophantine analysis Finite fields (Algebra) Diophantische Gleichung (DE-588)4012386-8 gnd |
topic_facet | Analyse diophantienne Champs modulaires Diophantine analysis Finite fields (Algebra) Diophantische Gleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001474185&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT schmidtwolfgangm equationsoverfinitefieldsanelementaryapproach |