Equations over finite fields an elementary approach

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schmidt, Wolfgang M. 1933- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 1976
Schriftenreihe:Lecture notes in mathematics 536
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV002243133
003 DE-604
005 20080430
007 t
008 890928s1976 |||| 00||| eng d
020 |a 354007855X  |9 3-540-07855-X 
020 |a 038707855X  |9 0-387-07855-X 
035 |a (OCoLC)721423640 
035 |a (DE-599)BVBBV002243133 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-12  |a DE-91  |a DE-91G  |a DE-384  |a DE-355  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-706  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA3 
082 0 |a 512.9/4 
082 0 |a 510/.8 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a 10G05  |2 msc 
100 1 |a Schmidt, Wolfgang M.  |d 1933-  |e Verfasser  |0 (DE-588)136169627  |4 aut 
245 1 0 |a Equations over finite fields  |b an elementary approach  |c Wolfgang M. Schmidt 
264 1 |a Berlin [u.a.]  |b Springer  |c 1976 
300 |a IX, 267 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 536 
650 4 |a Analyse diophantienne 
650 4 |a Champs modulaires 
650 4 |a Diophantine analysis 
650 4 |a Finite fields (Algebra) 
650 0 7 |a Diophantische Gleichung  |0 (DE-588)4012386-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Diophantische Gleichung  |0 (DE-588)4012386-8  |D s 
689 0 |5 DE-604 
830 0 |a Lecture notes in mathematics  |v 536  |w (DE-604)BV000676446  |9 536 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001474185&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-001474185 
980 4 |a (DE-12)AK19620323 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 001z 2001 B 999-536
DE-BY-TUM_katkey 352088
DE-BY-TUM_media_number 040020162629
_version_ 1816711465072066561
adam_text Table of Contents Chapter Page Introduction 1 I. Equations yd = f(x) and yq - y = f(x) 1. Finite Fields 3 2. Equations y = f (x) 8 3. Construction of certain polynomials 16 4. Proof of the Main Theorem 21 5. Removal of the condition (m,d) =1 22 6. Hyperderivatives 27 2 7. Removal of the condition that q = p or p .... 31 8. The Work of Stark. . 32 9. Equations yq - y = f(x) 34 II. Character Suras and Exponential Sums 1. Characters of Finite Abelian Groups 38 2. Characters and Character Sums associated with Finite Fields 41 3. Gaussian Sums 46 4. The low road 50 5. Systems of equations y 1 = f (x),...,y n = Vx) 52 6. Auxiliary lemmas on »}*+... + (O^ 57 7. Further auxiliary lemmas 60 8. Zeta Function and L-Functions 62 9. Special L-Functions 65 10. Field extensions. The Davenport - Hasse relations . 72 11. Proof of the Principal Theorems 77 VIII Chapter Page 12. Kloosterman Sums 84 13. Further Results 88 III. Absolutely Irreducible Equations f(x,y) = 0 1. Introduction 92 2. Independence results 97 3. Derivatives 105 4. Construction of two algebraic functions 107 5. Construction of two polynomials 114 6. Proof of the Main Theorem 116 7. Valuations 119 8. Hyperderivatives again 125 9. Removal of the condition that q = P 131 IV. Equations in Many Variables 1. Theorems of Chevalley and Warning 134 2. Quadratic forms 140 3. Elementary upper bounds. Projective zeros 147 4. The average number of zeros of a polynomial. . . . 157 5. Additive Equations: A Chebychev Argument 160 6. Additive Equations: Character Sums 166 7. Equations f1(y)x1 1l+.. .+fn(y)xndn = 0 173 V. Absolutely Irreducible Equations f(x , ...,x ) = 0 1. Elimination Theory 177 2. The absolute irreducibility of polynomials (I) . . 190 3. The absolute irreducibility of polynomials (II). . 194 4. The absolute irreducibility of polynomials (III) . 204 IX Chapter Page 5. The number of zeros of absolutely irreducible polynomials in n variables 210 VI. Rudiments of Algebraic Geometry. The Number of Points in Varieties over Finite Fields 1. Varieties 216 2. Dimension 228 3. Rational Maps 235 4. Birational Maps 244 5. Linear Disjointness of Fields 250 6. Constant Field Extensions 254 7. Counting Points in Varieties Over Finite Fields. . 260 BIBLIOGRAPHY 265
any_adam_object 1
author Schmidt, Wolfgang M. 1933-
author_GND (DE-588)136169627
author_facet Schmidt, Wolfgang M. 1933-
author_role aut
author_sort Schmidt, Wolfgang M. 1933-
author_variant w m s wm wms
building Verbundindex
bvnumber BV002243133
callnumber-first Q - Science
callnumber-label QA3
callnumber-raw QA3
callnumber-search QA3
callnumber-sort QA 13
callnumber-subject QA - Mathematics
classification_rvk SI 850
ctrlnum (OCoLC)721423640
(DE-599)BVBBV002243133
dewey-full 512.9/4
510/.8
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
510 - Mathematics
dewey-raw 512.9/4
510/.8
dewey-search 512.9/4
510/.8
dewey-sort 3512.9 14
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01727nam a2200457 cb4500</leader><controlfield tag="001">BV002243133</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080430 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1976 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354007855X</subfield><subfield code="9">3-540-07855-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038707855X</subfield><subfield code="9">0-387-07855-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)721423640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002243133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">10G05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmidt, Wolfgang M.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136169627</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equations over finite fields</subfield><subfield code="b">an elementary approach</subfield><subfield code="c">Wolfgang M. Schmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 267 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">536</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse diophantienne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Champs modulaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diophantine analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite fields (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">536</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">536</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001474185&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001474185</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK19620323</subfield></datafield></record></collection>
id DE-604.BV002243133
illustrated Not Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 354007855X
038707855X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001474185
oclc_num 721423640
open_access_boolean
owner DE-12
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-384
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-83
DE-11
DE-188
owner_facet DE-12
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-384
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-83
DE-11
DE-188
physical IX, 267 S.
publishDate 1976
publishDateSearch 1976
publishDateSort 1976
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Schmidt, Wolfgang M. 1933-
Equations over finite fields an elementary approach
Lecture notes in mathematics
Analyse diophantienne
Champs modulaires
Diophantine analysis
Finite fields (Algebra)
Diophantische Gleichung (DE-588)4012386-8 gnd
subject_GND (DE-588)4012386-8
title Equations over finite fields an elementary approach
title_auth Equations over finite fields an elementary approach
title_exact_search Equations over finite fields an elementary approach
title_full Equations over finite fields an elementary approach Wolfgang M. Schmidt
title_fullStr Equations over finite fields an elementary approach Wolfgang M. Schmidt
title_full_unstemmed Equations over finite fields an elementary approach Wolfgang M. Schmidt
title_short Equations over finite fields
title_sort equations over finite fields an elementary approach
title_sub an elementary approach
topic Analyse diophantienne
Champs modulaires
Diophantine analysis
Finite fields (Algebra)
Diophantische Gleichung (DE-588)4012386-8 gnd
topic_facet Analyse diophantienne
Champs modulaires
Diophantine analysis
Finite fields (Algebra)
Diophantische Gleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001474185&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT schmidtwolfgangm equationsoverfinitefieldsanelementaryapproach