Discrete mathematical models with applications to social, biological, and environmental problems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Roberts, Fred S. 1943- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Englewood Cliffs, New Jersey Prentice-Hall 1976
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV002233926
003 DE-604
005 20230404
007 t|
008 890928s1976 xx d||| |||| 00||| eng d
020 |a 013214171X  |9 0-13-214171-X 
035 |a (OCoLC)264953832 
035 |a (DE-599)BVBBV002233926 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G  |a DE-384  |a DE-473  |a DE-739  |a DE-355  |a DE-19  |a DE-706  |a DE-188  |a DE-83 
050 0 |a QH323.5 
082 0 |a 511/.8  |2 18 
084 |a MR 2200  |0 (DE-625)123489:  |2 rvk 
084 |a QH 252  |0 (DE-625)141562:  |2 rvk 
084 |a SK 110  |0 (DE-625)143215:  |2 rvk 
100 1 |a Roberts, Fred S.  |d 1943-  |e Verfasser  |0 (DE-588)13624419X  |4 aut 
245 1 0 |a Discrete mathematical models  |b with applications to social, biological, and environmental problems  |c Fred S. Roberts 
264 1 |a Englewood Cliffs, New Jersey  |b Prentice-Hall  |c 1976 
300 |a XVI, 560 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 7 |a Wiskundige modellen  |2 gtt 
650 4 |a Mathematisches Modell 
650 4 |a Sozialwissenschaften 
650 4 |a Biology  |x Mathematical models 
650 4 |a Social sciences  |x Mathematical models 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Biologie  |0 (DE-588)4006851-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Graphentheorie  |0 (DE-588)4113782-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Sozialwissenschaften  |0 (DE-588)4055916-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Sozialwissenschaften  |0 (DE-588)4055916-6  |D s 
689 1 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 1 |5 DE-604 
689 2 0 |a Biologie  |0 (DE-588)4006851-1  |D s 
689 2 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 2 |5 DE-604 
689 3 0 |a Biologie  |0 (DE-588)4006851-1  |D s 
689 3 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 3 2 |a Graphentheorie  |0 (DE-588)4113782-6  |D s 
689 3 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001468143&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-001468143 

Datensatz im Suchindex

DE-19_call_number 1601/SK 110 R644
0501/Mag 06832
1101/Mag 61294
DE-19_location 95
70
65
DE-473_call_number 30/SK 110 BB 982
DE-473_location 0
DE-BY-TUM_call_number 0102 MAT 050f 2001 A 28697
DE-BY-TUM_katkey 347259
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010384239
DE-BY-UBG_katkey 290454
DE-BY-UBG_media_number 013102182033
DE-BY-UBM_katkey 583193
DE-BY-UBM_media_number 41621803540013
41610688570010
41602545370016
DE-BY-UBR_call_number 00/QH 252 R644
DE-BY-UBR_katkey 471237
DE-BY-UBR_location 00
DE-BY-UBR_media_number 069015698286
_version_ 1824050770359615488
adam_text Contents Preface xi Notation xviii Introduction: The Scope of the Book 1 1: Mathematical Models 7 1.1 The Cyclical Nature of Mathematical Modelling 7 1.2 An Example: One Way Streets 8 1.3 Steps in the Mathematical Modelling Cycle 14 1.4 Types of Models 16 2: Graphs 20 2.1 Some Examples 20 2.2 Connectedness 31 2.2.1 Reaching 31 2.2.2 Distance 33 2.2.3 Joining 33 2.2.4 Connectedness Categories 34 Hi iv Contents 2.2.5 Criteria for Connectedness 35 2.2.6 The Case of Graphs 38 2.3 Strong Components and the Vertex Basis 42 2.3.1 Vertex Bases and Communication Networks 42 2.3.2 Theorems and Proofs 46 2.3.3 Some Graph Theoretical Terminology 48 2.4 Digraphs and Matrices 52 2.4.1 The Adjacency Matrix 53 2.4.2 The Reachability Matrix 56 2.4.3 The Distance Matrix 58 3: Applications of Graphs 64 3.1 Signed Graphs and the Theory of Structural Balance 64 3.1.1 Signed Graphs 64 3.1.2 Balance in Small Groups 65 3.1.3 Proof of the Structure Theorem 70 3.2 Tournaments 81 3.3 Orientability and Vulnerability 93 3.3.1 Traffic Flow 93 3.3.2 Vulnerability 98 3.3.3 Transitive Orientability 100 3.4 Intersection Graphs 111 3.4.1 Definition of an Intersection Graph 111 3.4.2 Interval Graphs and their Applications 113 3.4.3 Characterization of Interval Graphs 121 3.4.4 Proofs of the Lemmas of Sec. 3,4.3 127 3.4.5 Other Intersection Graphs 129 3.4.6 Phasing Traffic Signals 129 3.5 Food Webs 140 3.5.1 The Dimension of Ecological Phase Space 140 3.5.2 Trophic Status 145 3.6 Garbage Trucks and Colorability 156 3.6.1 Tours of Garbage Trucks 156 3.6.2 Theorems on Colorability 158 3.6.3 The Four Color Problem 162 4: Weighted Digraphs and Pulse Processes 176 4.1 Introduction: Energy and other Applications 176 4.2 Excursis: Eigenvalues 178 Contents v 4.3 The Signed or Weighted Digraph as a Tool for Modelling Complex Systems 186 4.4 Pulse Processes 207 4.5 Stability in Pulse Processes 277 4.5.1 Definition of Stability 217 4.5.2 Eigenvalues and Stability 219 4.5.3 Structure and Stability: Rosettes 222 4.6 Applications of the Theory of Stability 230 4.7 Proofs of Theorems 4.6 through 4.8 243 5: Markov Chains 258 5.1 Stochastic Processes and Markov Chains 258 5.2 Transition Probabilities and Transition Digraphs 263 5.3 Classification of States and Chains 274 5.4 Absorbing Chains 275 5.5 Regular Chains 289 5.5.1 Definition of Regular Chain 289 5.5.2 Fixed Point Probability Vectors 291 5.5.3 Mean First Passage 294 5.5.4 Proof of Theorem 5.8 296 5.6 Ergodic Chains 302 5.6.1 The Periodic Behavior of Ergodic Chains 302 5.6.2 Generalization from Regular Chains 306 5.7 Applications to Genetics 310 5.7.1 The Mendelian Theory 310 5.7.2 Predictions from the Mendelian Model 312 5.8 Flow Models 320 5.8.1 An Air Pollution Flow Model 320 5.8.2 A Money Flow Model 324 5.9 Mathematical Models of Learning 331 5.9.1 The Linear Model 332 5.9.2 The 1 element All or none Model 332 5.9.3 The 2 element All or none Model 336 5.9.4 The Estes Model 338 5.10 Influence and Social Power 346 5.11 Diffusion and Brownian Motion 358 vi Contents 6: n Person Games 364 6.1 Games in Characteristic Function Form 364 6.2 The Core 371 6.2.1 Effective Preference 371 6.2.2 Computation of the Core 373 6.3 Stable Sets 579 6.4 The Existence of a Nonempty Core 386 6.5 Existence and Uniqueness of Stable Sets 391 6.6 S Equivalence and the (0, 1) Normalization 400 6.6.1 Isomorphism and S equivalence 400 6.6.2 The Geometric Point of View 404 6.7 The Shapley Value 410 6.7.1 Shapley s Axioms 410 6.7.2 Examples 411 6.7.3 Simple Games 412 6.7.4 The Probabilistic Interpretation and Applications to Legislatures 414 6.7.5 Proof of the Value Formula 417 7: Group Decisionmaking 425 7.1 Social Welfare Functions 425 7.2 Arrow s Impossibility Theorem 433 7.2.1 Arrow s Axioms 433 7.2.2 Discussion 437 7.2.3 Proof of Arrow s Theorem 440 7.3 Joint Scales and Single Peakedness 447 7.4 Distance between Rankings 455 7.4.1 The Kemeny Snell Axioms 455 7.4.2 Calculating Distance 459 7.4.3 Medians and Means 462 7.4.4 Remarks 464 8: Measurement and Utility 473 8.1 Introduction 473 8.2 Relations 474 8.2.1 Definition of Relation 474 8.2.2 Properties of Binary Relations 476 8.2.3 Operations 478 8.3 The Theory of Measurement 484 Contents vii 8.4 Scale Type and the Theory of Meaningfulness 489 8.4.1 Regular Scales 489 8.4.2 Scale Type 491 8.4.3 Examples of Meaningful and Meaningless Statements 493 8.5 Examples of Fundamental Measurement I: Ordinal Utility Functions 503 8.5.1 The Representation Theorem 503 8.5.2 The Expected Utility Hypothesis 508 8.5.3 The Uniqueness Theorem 510 8.5.4 Remarks 511 8.6 Examples of Fundamental Measurement II: Extensive Measurement 516 8.6.1 Holder s Theorem 516 8.6.2 Uniqueness 520 8.6.3 A Comment 521 8.7 Examples of Fundamental Measurement III: Conjoint Measurement 525 8.8 Semiorders 534 8.8.1 The Scott Suppes Theorem 534 8.8.2 Uniqueness 538 8.8.3 Interval Orders and Measurement Without Numbers 538 Author Index 549 Subject Index 551
any_adam_object 1
author Roberts, Fred S. 1943-
author_GND (DE-588)13624419X
author_facet Roberts, Fred S. 1943-
author_role aut
author_sort Roberts, Fred S. 1943-
author_variant f s r fs fsr
building Verbundindex
bvnumber BV002233926
callnumber-first Q - Science
callnumber-label QH323
callnumber-raw QH323.5
callnumber-search QH323.5
callnumber-sort QH 3323.5
callnumber-subject QH - Natural History and Biology
classification_rvk MR 2200
QH 252
SK 110
ctrlnum (OCoLC)264953832
(DE-599)BVBBV002233926
dewey-full 511/.8
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.8
dewey-search 511/.8
dewey-sort 3511 18
dewey-tens 510 - Mathematics
discipline Soziologie
Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02381nam a2200589 c 4500</leader><controlfield tag="001">BV002233926</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230404 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1976 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">013214171X</subfield><subfield code="9">0-13-214171-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)264953832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002233926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH323.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.8</subfield><subfield code="2">18</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2200</subfield><subfield code="0">(DE-625)123489:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 252</subfield><subfield code="0">(DE-625)141562:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roberts, Fred S.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13624419X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete mathematical models</subfield><subfield code="b">with applications to social, biological, and environmental problems</subfield><subfield code="c">Fred S. Roberts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Englewood Cliffs, New Jersey</subfield><subfield code="b">Prentice-Hall</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 560 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sozialwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biology</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001468143&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001468143</subfield></datafield></record></collection>
id DE-604.BV002233926
illustrated Illustrated
indexdate 2025-02-14T17:22:40Z
institution BVB
isbn 013214171X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001468143
oclc_num 264953832
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-384
DE-473
DE-BY-UBG
DE-739
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-706
DE-188
DE-83
owner_facet DE-91G
DE-BY-TUM
DE-384
DE-473
DE-BY-UBG
DE-739
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-706
DE-188
DE-83
physical XVI, 560 S. graph. Darst.
publishDate 1976
publishDateSearch 1976
publishDateSort 1976
publisher Prentice-Hall
record_format marc
spellingShingle Roberts, Fred S. 1943-
Discrete mathematical models with applications to social, biological, and environmental problems
Wiskundige modellen gtt
Mathematisches Modell
Sozialwissenschaften
Biology Mathematical models
Social sciences Mathematical models
Mathematisches Modell (DE-588)4114528-8 gnd
Mathematik (DE-588)4037944-9 gnd
Biologie (DE-588)4006851-1 gnd
Graphentheorie (DE-588)4113782-6 gnd
Sozialwissenschaften (DE-588)4055916-6 gnd
subject_GND (DE-588)4114528-8
(DE-588)4037944-9
(DE-588)4006851-1
(DE-588)4113782-6
(DE-588)4055916-6
title Discrete mathematical models with applications to social, biological, and environmental problems
title_auth Discrete mathematical models with applications to social, biological, and environmental problems
title_exact_search Discrete mathematical models with applications to social, biological, and environmental problems
title_full Discrete mathematical models with applications to social, biological, and environmental problems Fred S. Roberts
title_fullStr Discrete mathematical models with applications to social, biological, and environmental problems Fred S. Roberts
title_full_unstemmed Discrete mathematical models with applications to social, biological, and environmental problems Fred S. Roberts
title_short Discrete mathematical models
title_sort discrete mathematical models with applications to social biological and environmental problems
title_sub with applications to social, biological, and environmental problems
topic Wiskundige modellen gtt
Mathematisches Modell
Sozialwissenschaften
Biology Mathematical models
Social sciences Mathematical models
Mathematisches Modell (DE-588)4114528-8 gnd
Mathematik (DE-588)4037944-9 gnd
Biologie (DE-588)4006851-1 gnd
Graphentheorie (DE-588)4113782-6 gnd
Sozialwissenschaften (DE-588)4055916-6 gnd
topic_facet Wiskundige modellen
Mathematisches Modell
Sozialwissenschaften
Biology Mathematical models
Social sciences Mathematical models
Mathematik
Biologie
Graphentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001468143&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT robertsfreds discretemathematicalmodelswithapplicationstosocialbiologicalandenvironmentalproblems