Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sokolov, A. A. (VerfasserIn), Rantz, S. E. (VerfasserIn), Roche, M. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Paris Unesco Press 1976
Schriftenreihe:Studies and reports in hydrology. 22.
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV002166068
003 DE-604
005 20090721
007 t|
008 890928s1976 xx d||| |||| 00||| eng d
035 |a (OCoLC)645741431 
035 |a (DE-599)BVBBV002166068 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-91  |a DE-83  |a DE-188 
100 1 |a Sokolov, A. A.  |e Verfasser  |4 aut 
245 1 0 |a Floodflow computation  |b methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade  |c A. A. Sokolov ; S. E. Rantz ; M. Roche* 
264 1 |a Paris  |b Unesco Press  |c 1976 
300 |a 294 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Studies and reports in hydrology.  |v 22. 
700 1 |a Rantz, S. E.  |e Verfasser  |4 aut 
700 1 |a Roche, M.  |e Verfasser  |4 aut 
830 0 |a Studies and reports in hydrology.  |v 22.  |w (DE-604)BV005875802  |9 22. 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001422356&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |q TUB-nvmb 
943 1 |a oai:aleph.bib-bvb.de:BVB01-001422356 
980 4 |a (DE-12)AK20730842 
980 4 |a (DE-12)AK18020654 
980 4 |a (DE-12)AK18640717 

Datensatz im Suchindex

DE-BY-TUM_call_number 0024 71 A 1986
DE-BY-TUM_katkey 304750
DE-BY-TUM_location Mag
DE-BY-TUM_media_number 040002530912
_version_ 1820858774777233408
adam_text Titel: Floodflow computation Autor: Sokolov, Aleksej Aleksandrovic Jahr: 1976 Contents Foreword 13 1 Determination of optimum design probabilities of flood discharge 1-1 Objectives of studies of design probability 15 1-2 Determination of optimum design probability by analytical methods 16 1.2.1 U.S.S.R. practice 16 1.2.2 United States practice 17 1.2.2.1 Pre-project conditions 18 1.2.2.2 Project conditions 18 1.2.2.3 Graphical analysis 19 1-2.3 French practice 20 1 -3 Standard design probabilities for various hydraulic structures 21 1.3.1 U.S.S.R. practice 22 1.3.2 Polish practice 24 1-3.3 Indian practice 25 1-3.4 Netherlands practice 25 1.4 Adjustment of design discharge for statistical sampling error 25 1-4.1 U.S.S.R. practice 25 1-5 Selected references 26 2 Probability distributions used in hydrologie design 2.1 General 28 2-2 Empirical frequency curves 28 2^.1 Empirical formulas for computing the probability of individual events 29 2.2.2 Probability graph paper 32 2.2.2.1 Normal-probability graph paper 32 2.2.2.2 Extreme-value probability (Gumbel) graph paper 35 2.2.2.3 Goodrich probability graph paper 35 2.2.2.4 Other probability graph papers 37 2.3 Theoretical probability distributions 37 2-3.1 Continuous binomial distribution—Pearson type Ø 37 2.3.2 Logarithmic normal distribution 41 2.3.2.1 Japanese practice 44 2.3.2.2 United States practice 46 2.3.3 Three-parameter gamma distribution 49 2.3.3.1 U.S.S.R. practice: Kritsky-Menkel distribution 49 2-3.4 Extreme-value (Gumbel) distribution 51 2.3.4.1 Japanese practice 54 2.3.5 Choice of a theoretical probability distribution 54 2.3.5.1 French practice 55 2.3.6 Computation of distribution parameters from observed data (U.S.S.R. practice) 58 2.3.6.1 Method of maximum likelihood 62 2.3.6.2 Example of a flood-frequency curve computation (U.S.S.R. practice) 62 2.3.7 Error analysis of distribution parameters computed from observed data 69 2.4 Selected references 70 3 Use of streamflow data in computing flood-frequency curves 3.1 Streamflow-data requirements 73 3.1.1 Quality control of peak-discharge data 73 3.1.2 Sample size of peak-discharge data 74 3.1.3 Homogeneity of time series 77 3.1.4 Tests for homogeneity of time series 78 3.1.4.1 Homogeneity criterion for the mean of time series 79 3.1.4.2 Homogeneity criterion for the standard deviation of time series 81 3.1.4.3 Example of a homogeneity test for snowmelt and rainstorm peak dis- charges 82 3.2 Frequency curves of peak discharge 84 3.2.1 Computation of flood-frequency curves for a station using annual peak discharges 84 3.2.1.1 U.S.S.R. practice 85 3.2.1.2 United States practice 87 3.2.2 Combination of the observed peak-discharge series at several stations (station-year method) 89 3.2.3 Computation of flood-frequency curves using more than one peak discharge per year (method of peaks above a base ) 90 3.3 Frequency curves of flood volume 91 3.3.1 Determination of flood duration 91 3.3.2 Computation of the frequency curve of flood volume 93 3.4 Selected references 93 4 Methods of floodflow computation and analysis where streamflow data are inadequate 4.1 Principles of floodflow computation by genetic and empirical equations 95 4.2 Empirical reduction equations 96 4.2.1 Reduction coefficient based on drainage-basin size 98 4.2.1.1 U.S.S.R. practice 98 4.2.1.2 Italian practice 98 4.2.2 Reduction coefficient based on lag time 99 4.2.2.1 U.S.S.R. practice 99 4.2.2.2 Algerian practice 100 4.2.3 Determination of parameters of empirical reduction equations from regional streamflow data 101 4.2.4 Determination of parameters of empirical reduction equations when streamflow data are inadequate 106 4-3 Peak-discharge equations based on flood volume 108 4.3.1 U.S.S.R. practice 109 4.3.2 Italian practice 110 4.3.3 Central and south-west Africa 111 4.4 Peak-discharge equations based on the genetic isochrone principle 114 4.4.1 Basic equation of the Rational method 114 4.4.2 Determination of time of concentration for use in Rational method 115 4.4.2.1 United States practice 116 4.4.2.2 Central American practice 116 4.4.2.3 Italian practice Ëá 4.4.2.4 Canadian practice 116 4.4.2.5 U.S.S.R. practice 117 4.4.3 Determination of precipitation intensity for use in Rational method 119 4.4.3.1 Method used for areas having adequate records from recording-precipi- tation gauges 119 4.4.3.2 Methods used for areas having inadequate records from recording- precipitation gauges 121 4.4.3.3 Regional precipitation depth-area relations 124 4.4.4 Determination of runoff coefficient for use in the Rational method 127 4.4.5 Computation of peak discharge by the Rational method 129 4.4.5.1 U.S.S.R. practice 129 4.4.5.2 Spanish practice 134 4.4.6 Computation of peak discharge for an ungauged site based on a nearby gauging-station record 135 4.4.6.1 U.S.S.R. practice 135 4.4.7 Computation of the peak-discharge frequency curve for a short-term gauging station from long-term precipitation data 136 4.4.7.1 French practice 136 4.5 Determination of volume of flood runoff 136 4.5.1 Indian practice 137 4.6 Computation of peak snowmelt discharge in regions of low relief (plains and valleys) 137 4.6.1 Determination of parameters in equations of peak snowmelt discharge 138 4.6.1.1 U.S.S.R. practice 138 4.6.2 Computation of peak snowmelt discharge for an ungauged site based on nearby gauging-station records 142 4.6.2.1 U.S.S.R. practice 142 4.7 Determination of snowmelt flood volume 142 4.8 Computation of snowmelt intensity 143 4.8.1 U.S.S.R. practice 144 4.8.2 United States practice 145 4.8.3 General equations for basin melt during periods of rainfall 145 4.8.4 General equations for basin melt during rain-free periods 146 4.9 Computation of peak snowmelt discharge in mountain regions 148 4.9.1 Empirical equations for computing peak snowmelt discharge in mountain regions 148 4-9.1.1 U.S.S.R. practice 148 4.9.2 Relation of snowmelt equation parameters to altitude and orientation of mountain slopes 150 4Ë0 Computation of design storms and rainfall excess 150 4.10.1 General considerations 151 4.10.2 Methods of computing design storms 152 4.10.2.1 Method 1. Design storm estimated from probable maximum depth- duration data; estimate of rainfall excess 153 4.10.2.2 Method 2. Design storm estimated by transposition of record storm; estimate of rainfall excess 156 4.10.2.3 Method 3. Design storm estimated by modified storm transposition; estimate of rainfall excess 157 4-H Selected references 158 5 Methods of developing design-flood hydrographe 5-1 Flood-hydrograph models 161 5-2 Flood-hydrograph models based on the shape of recorded hydrographs 162 5-2.1 Use of the maximum recorded hydrograph at the study gauging station 162 5·2.1·1 U.S.S.R. practice 162 5-2.2 Use of hydrographs recorded at base gauging stations 163 52?1 U.S.S.R. practice 163 5.2.2.2 Romanian practice 165 5.3 Design hydrographs for snowmelt floods in small basins 166 5.4 Development of a model hydrograph by stochastic methods 168 5.4.1 Polish practice 168 5.4.1.1 First variant 168 5.4.1.2 Second variant 168 5.5 Development of design hydrographs by the unit-hydrograph method 169 5.5.1 Basic principles of the unit-hydrograph method 169 5.5.2 Separation of surface-runoff hydrograph from hydrograph of total runoff 172 5.5.2.1 United States practice 173 5.5.2.2 United Kingdom practice 175 5.5.3 Computation of rainfall excess from total storm rainfall 175 5.5.3.1 United Kingdom practice 176 5.5.3.2 United States practice 177 5.5.3.3 Indian practice 182 5.5.4 Unit-hydrograph derivation 182 5.5.4.1 Unit hydrographs from isolated unit storms 182 5.5.4.2 Unit hydrographs from records of major floods 184 5.5.4.3 Synthetic unit hydrographs 187 5.5.4.4 S-curve hydrographs 193 5.5.4.5 Summary and example of synthetic unit-hydrograph computation 195 5.5.5 Transformation of design rainfall to the flood-runoff hydrograph 199 5.5.5.1 Comparison of unit hydrographs derived from recorded major and minor flood hydrographs 199 5.5.5.2 Modification of unit hydrographs for design-flood computation 200 5.5.5.3 Computation of the design-flood hydrograph by the unit-hydrograph method 200 5.6 Computation of the design-flood hydrograph by the isochrone method 203 5.6.1 Variation of the runoff coefficient with time in the isochrone method 206 5.6.1.1 French practice 206 5.7 Analytical expressions of hydrograph shape 209 5.7.1 U.S.S.R. practice 209 5.7.2 Polish practice 212 5.7.2.1 Reitz-Kreps equation 212 5.7.2.2 Pearson distribution equations—types Ø and IV 212 5.7.2.3 Three-parameter equation 213 5.7.3 Japanese practice 213 5-8 Relation of hydrograph shape to basin characteristics 215 5-8.1 Size and configuration of the basin 215 5-8.2 Drainage pattern and density 215 5.8.3 Channel slope 216 5.8.4 Overland slope 216 5.8.5 Natural storage 217 5.9 Selected references 218 6 Methods of computing design river and lake stages 6.1 General 220 6-2 Determination of design stage from stage-discharge data 220 6.3 Determination of design stage from stage data alone 222 6.3.1 U.S.S.R. practice 226 6-4 Determination of design stage from short-term stage-discharge data 228 6.4.1 United States practice 230 6·5 Backwater corrections to the design stage for the effect of ice 231 6.5.1 U.S.S.R. practice 232 6-6 Transfer of design stage from one site to another on the same stream 234 6.6.1 Method 1 234 6.6.2 Method 2 234 6.6.3 Method 3 235 6.6.4 Method 4 236 6.7 Computation of design discharge in the absence of any stage-discharge information for the study stream 240 6.8 Selected references 240 7 Methods for evaluating floodflow characteristics by field investigation 7.1 General 242 7.2 Determination of historic flood stages from high-water marks 243 7.3 Elements of the field investigation 245 7.3.1 Selection of the study reach 245 7.3.2 Selection of cross-sections to be surveyed 246 7.3.2.1 U.S.S.R. practice 246 7.3.3 Determination of the water-surface profile from high-water marks 247 7.3.3.1 U.S.S.R. practice 248 7.3.3.2 United States practice 249 7.3.3.3 Bulgarian practice 250 7.3.3.4 Romanian practice 250 7.3.4 Determination of mean water-surface slope from the surveyed flood profile 250 7.3.4.1 U.S.S.R. practice 250 7.3.5 Determination of roughness coefficient 251 7.3.5.1 U.S.S.R. practice 252 7.3.5.2 United States practice 257 7.3.5.3 Indian practice 258 7.4 Computation of mean velocity at peak stage 260 7.4.1 U.S.S.R. practice 260 7.5 Computation of discharge at peak stage 261 7.5.1 U.S.S.R. practice 261 7.6 Determination of exceedance probability of peak discharge evaluated by field investigation 264 7.7 Selected references 265 8 Application of analogue and digital computers for modelling floodflow 8.1 General 266 8.1.1 Analogue computers 266 8.1.2 Digital computers 267 8.2 Application of analogue computers for computing design-flood hydro- graphs 267 8.2.1 Use of the Duhamel integral 267 8.2.1.1 U.S.S.R. practice 269 8.2.2 Use of other equations with the analogue computer 272 8.2.2.1 Use of direct and indirect analogue computers 272 8.2.2.2 Channel flood routing by analogue computer (Japanese practice) 273 8.2.2.3 Simulation of flood-control operations by analogue computer (Japanese practice) 273 8.2.2.4 Channel design by analogue computer (Japanese practice) 276 8.3 Mathematical simulation of floods by digital computer 277 8-3.1 General 277 8-3.2 Types of mathematical models 278 8-3.3 Simple linear models—influence-function method 279 8.3.3.1 Italian approach 281 8-3.4 Models that include physical elements 282 8.3.4.1 Multistratum models 284 8.3.4.2 Snowmelt-runofT models 287 8.3.5 Multiparametric models and optimization methods 288 83 5-1 U.S.S.R. approach 29 84 Selected references 292
any_adam_object 1
author Sokolov, A. A.
Rantz, S. E.
Roche, M.
author_facet Sokolov, A. A.
Rantz, S. E.
Roche, M.
author_role aut
aut
aut
author_sort Sokolov, A. A.
author_variant a a s aa aas
s e r se ser
m r mr
building Verbundindex
bvnumber BV002166068
ctrlnum (OCoLC)645741431
(DE-599)BVBBV002166068
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01367nam a2200349 cb4500</leader><controlfield tag="001">BV002166068</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090721 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1976 xx d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)645741431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002166068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sokolov, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Floodflow computation</subfield><subfield code="b">methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade</subfield><subfield code="c">A. A. Sokolov ; S. E. Rantz ; M. Roche*</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Unesco Press</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">294 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies and reports in hydrology.</subfield><subfield code="v">22.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rantz, S. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roche, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies and reports in hydrology.</subfield><subfield code="v">22.</subfield><subfield code="w">(DE-604)BV005875802</subfield><subfield code="9">22.</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=001422356&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nvmb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001422356</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK20730842</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK18020654</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK18640717</subfield></datafield></record></collection>
id DE-604.BV002166068
illustrated Illustrated
indexdate 2024-12-23T10:31:29Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001422356
oclc_num 645741431
open_access_boolean
owner DE-12
DE-91
DE-BY-TUM
DE-83
DE-188
owner_facet DE-12
DE-91
DE-BY-TUM
DE-83
DE-188
physical 294 S. graph. Darst.
psigel TUB-nvmb
publishDate 1976
publishDateSearch 1976
publishDateSort 1976
publisher Unesco Press
record_format marc
series Studies and reports in hydrology.
series2 Studies and reports in hydrology.
spellingShingle Sokolov, A. A.
Rantz, S. E.
Roche, M.
Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade
Studies and reports in hydrology.
title Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade
title_auth Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade
title_exact_search Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade
title_full Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade A. A. Sokolov ; S. E. Rantz ; M. Roche*
title_fullStr Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade A. A. Sokolov ; S. E. Rantz ; M. Roche*
title_full_unstemmed Floodflow computation methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade A. A. Sokolov ; S. E. Rantz ; M. Roche*
title_short Floodflow computation
title_sort floodflow computation methods comp from world experience a contrib to the internat hydrolog decade
title_sub methods comp. from world experience ; a contrib. to the Internat. Hydrolog. Decade
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001422356&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV005875802
work_keys_str_mv AT sokolovaa floodflowcomputationmethodscompfromworldexperienceacontribtotheinternathydrologdecade
AT rantzse floodflowcomputationmethodscompfromworldexperienceacontribtotheinternathydrologdecade
AT rochem floodflowcomputationmethodscompfromworldexperienceacontribtotheinternathydrologdecade