A note on the linear theory of two-dimensional separated flows about thin bodies
By using a generalized method of solution for the mixed boundary value problem of analytic function theory, and by comparing the present method with the method of source-sink distribution and the method of analytic continuation, an attempt is made to unify the seemingly divergent development of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Minneapolis, Minn.
1962
|
Schriftenreihe: | Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B.
39. |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002049903 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 890928s1962 xx |||| 00||| eng d | ||
035 | |a (OCoLC)227291220 | ||
035 | |a (DE-599)BVBBV002049903 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
100 | 1 | |a Song, C. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A note on the linear theory of two-dimensional separated flows about thin bodies |
264 | 1 | |a Minneapolis, Minn. |c 1962 | |
300 | |a VII, 39 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B. |v 39. | |
520 | 3 | |a By using a generalized method of solution for the mixed boundary value problem of analytic function theory, and by comparing the present method with the method of source-sink distribution and the method of analytic continuation, an attempt is made to unify the seemingly divergent development of the linear theories of thin foils with separating flows. It is shown that most of the mathematical models may be regarded as special cases of a generalized Riabouchinsky model. The admission of a singularity, which is characteristic of the linear theory, introduces an arbitrary constant and hence the solution is generally non-unique. Therefore, it is always necessary to use additional conditions which are normally not required if exact theory is used. The number of the additional conditions required is equal to the number of singularities admitted. The solution can be made unique, however, by requiring that the solution must be sectionally continuous on the boundary and bounded at infinity. By admitting a singularity at a separation point, the model will represent a flow wherein the free streamline separates normally from the solid boundary. (Author). | |
650 | 7 | |a Aerodynamic configurations |2 dtict | |
650 | 7 | |a Airfoils |2 dtict | |
650 | 7 | |a Boundary layer |2 dtict | |
650 | 7 | |a Cavitation |2 dtict | |
650 | 7 | |a Equations |2 dtict | |
650 | 7 | |a Gas flow |2 dtict | |
650 | 7 | |a Hydrofoils |2 dtict | |
650 | 7 | |a Integral equations |2 dtict | |
650 | 7 | |a Mathematical analysis |2 dtict | |
650 | 7 | |a Mathematical models |2 dtict | |
650 | 7 | |a Tails(aircraft) |2 dtict | |
650 | 7 | |a Theory |2 dtict | |
650 | 7 | |a Wake |2 dtict | |
650 | 7 | |a Wedges |2 dtict | |
650 | 4 | |a Mathematisches Modell | |
810 | 2 | |a B. |t Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper |v 39. |w (DE-604)BV001897413 |9 39. | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-001340610 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0525 LV.23.22 |
---|---|
DE-BY-TUM_katkey | 223486 |
DE-BY-TUM_location | LSB |
DE-BY-TUM_media_number | TEMP3072335 |
_version_ | 1820872468427964416 |
any_adam_object | |
author | Song, C. S. |
author_facet | Song, C. S. |
author_role | aut |
author_sort | Song, C. S. |
author_variant | c s s cs css |
building | Verbundindex |
bvnumber | BV002049903 |
ctrlnum | (OCoLC)227291220 (DE-599)BVBBV002049903 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02632nam a2200457 cb4500</leader><controlfield tag="001">BV002049903</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1962 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227291220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002049903</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, C. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on the linear theory of two-dimensional separated flows about thin bodies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Minneapolis, Minn.</subfield><subfield code="c">1962</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 39 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B.</subfield><subfield code="v">39.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">By using a generalized method of solution for the mixed boundary value problem of analytic function theory, and by comparing the present method with the method of source-sink distribution and the method of analytic continuation, an attempt is made to unify the seemingly divergent development of the linear theories of thin foils with separating flows. It is shown that most of the mathematical models may be regarded as special cases of a generalized Riabouchinsky model. The admission of a singularity, which is characteristic of the linear theory, introduces an arbitrary constant and hence the solution is generally non-unique. Therefore, it is always necessary to use additional conditions which are normally not required if exact theory is used. The number of the additional conditions required is equal to the number of singularities admitted. The solution can be made unique, however, by requiring that the solution must be sectionally continuous on the boundary and bounded at infinity. By admitting a singularity at a separation point, the model will represent a flow wherein the free streamline separates normally from the solid boundary. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aerodynamic configurations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Airfoils</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary layer</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cavitation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas flow</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrofoils</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical models</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tails(aircraft)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wake</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wedges</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">B.</subfield><subfield code="t">Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper</subfield><subfield code="v">39.</subfield><subfield code="w">(DE-604)BV001897413</subfield><subfield code="9">39.</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001340610</subfield></datafield></record></collection> |
id | DE-604.BV002049903 |
illustrated | Not Illustrated |
indexdate | 2024-12-23T10:29:17Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001340610 |
oclc_num | 227291220 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | VII, 39 S. |
publishDate | 1962 |
publishDateSearch | 1962 |
publishDateSort | 1962 |
record_format | marc |
series2 | Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B. |
spellingShingle | Song, C. S. A note on the linear theory of two-dimensional separated flows about thin bodies Aerodynamic configurations dtict Airfoils dtict Boundary layer dtict Cavitation dtict Equations dtict Gas flow dtict Hydrofoils dtict Integral equations dtict Mathematical analysis dtict Mathematical models dtict Tails(aircraft) dtict Theory dtict Wake dtict Wedges dtict Mathematisches Modell |
title | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_auth | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_exact_search | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_full | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_fullStr | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_full_unstemmed | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_short | A note on the linear theory of two-dimensional separated flows about thin bodies |
title_sort | a note on the linear theory of two dimensional separated flows about thin bodies |
topic | Aerodynamic configurations dtict Airfoils dtict Boundary layer dtict Cavitation dtict Equations dtict Gas flow dtict Hydrofoils dtict Integral equations dtict Mathematical analysis dtict Mathematical models dtict Tails(aircraft) dtict Theory dtict Wake dtict Wedges dtict Mathematisches Modell |
topic_facet | Aerodynamic configurations Airfoils Boundary layer Cavitation Equations Gas flow Hydrofoils Integral equations Mathematical analysis Mathematical models Tails(aircraft) Theory Wake Wedges Mathematisches Modell |
volume_link | (DE-604)BV001897413 |
work_keys_str_mv | AT songcs anoteonthelineartheoryoftwodimensionalseparatedflowsaboutthinbodies |