A note on the linear theory of two-dimensional separated flows about thin bodies

By using a generalized method of solution for the mixed boundary value problem of analytic function theory, and by comparing the present method with the method of source-sink distribution and the method of analytic continuation, an attempt is made to unify the seemingly divergent development of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Song, C. S. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Minneapolis, Minn. 1962
Schriftenreihe:Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B. 39.
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV002049903
003 DE-604
005 00000000000000.0
007 t|
008 890928s1962 xx |||| 00||| eng d
035 |a (OCoLC)227291220 
035 |a (DE-599)BVBBV002049903 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91 
100 1 |a Song, C. S.  |e Verfasser  |4 aut 
245 1 0 |a A note on the linear theory of two-dimensional separated flows about thin bodies 
264 1 |a Minneapolis, Minn.  |c 1962 
300 |a VII, 39 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B.  |v 39. 
520 3 |a By using a generalized method of solution for the mixed boundary value problem of analytic function theory, and by comparing the present method with the method of source-sink distribution and the method of analytic continuation, an attempt is made to unify the seemingly divergent development of the linear theories of thin foils with separating flows. It is shown that most of the mathematical models may be regarded as special cases of a generalized Riabouchinsky model. The admission of a singularity, which is characteristic of the linear theory, introduces an arbitrary constant and hence the solution is generally non-unique. Therefore, it is always necessary to use additional conditions which are normally not required if exact theory is used. The number of the additional conditions required is equal to the number of singularities admitted. The solution can be made unique, however, by requiring that the solution must be sectionally continuous on the boundary and bounded at infinity. By admitting a singularity at a separation point, the model will represent a flow wherein the free streamline separates normally from the solid boundary. (Author). 
650 7 |a Aerodynamic configurations  |2 dtict 
650 7 |a Airfoils  |2 dtict 
650 7 |a Boundary layer  |2 dtict 
650 7 |a Cavitation  |2 dtict 
650 7 |a Equations  |2 dtict 
650 7 |a Gas flow  |2 dtict 
650 7 |a Hydrofoils  |2 dtict 
650 7 |a Integral equations  |2 dtict 
650 7 |a Mathematical analysis  |2 dtict 
650 7 |a Mathematical models  |2 dtict 
650 7 |a Tails(aircraft)  |2 dtict 
650 7 |a Theory  |2 dtict 
650 7 |a Wake  |2 dtict 
650 7 |a Wedges  |2 dtict 
650 4 |a Mathematisches Modell 
810 2 |a B.  |t Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper  |v 39.  |w (DE-604)BV001897413  |9 39. 
943 1 |a oai:aleph.bib-bvb.de:BVB01-001340610 

Datensatz im Suchindex

DE-BY-TUM_call_number 0525 LV.23.22
DE-BY-TUM_katkey 223486
DE-BY-TUM_location LSB
DE-BY-TUM_media_number TEMP3072335
_version_ 1820872468427964416
any_adam_object
author Song, C. S.
author_facet Song, C. S.
author_role aut
author_sort Song, C. S.
author_variant c s s cs css
building Verbundindex
bvnumber BV002049903
ctrlnum (OCoLC)227291220
(DE-599)BVBBV002049903
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02632nam a2200457 cb4500</leader><controlfield tag="001">BV002049903</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890928s1962 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227291220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002049903</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, C. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on the linear theory of two-dimensional separated flows about thin bodies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Minneapolis, Minn.</subfield><subfield code="c">1962</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 39 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Saint Anthony Falls Hydraulic Laboratory &lt;Minneapolis, Minn.&gt;: Technical paper / B.</subfield><subfield code="v">39.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">By using a generalized method of solution for the mixed boundary value problem of analytic function theory, and by comparing the present method with the method of source-sink distribution and the method of analytic continuation, an attempt is made to unify the seemingly divergent development of the linear theories of thin foils with separating flows. It is shown that most of the mathematical models may be regarded as special cases of a generalized Riabouchinsky model. The admission of a singularity, which is characteristic of the linear theory, introduces an arbitrary constant and hence the solution is generally non-unique. Therefore, it is always necessary to use additional conditions which are normally not required if exact theory is used. The number of the additional conditions required is equal to the number of singularities admitted. The solution can be made unique, however, by requiring that the solution must be sectionally continuous on the boundary and bounded at infinity. By admitting a singularity at a separation point, the model will represent a flow wherein the free streamline separates normally from the solid boundary. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aerodynamic configurations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Airfoils</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary layer</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cavitation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas flow</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrofoils</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical models</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tails(aircraft)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wake</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wedges</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">B.</subfield><subfield code="t">Saint Anthony Falls Hydraulic Laboratory &lt;Minneapolis, Minn.&gt;: Technical paper</subfield><subfield code="v">39.</subfield><subfield code="w">(DE-604)BV001897413</subfield><subfield code="9">39.</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001340610</subfield></datafield></record></collection>
id DE-604.BV002049903
illustrated Not Illustrated
indexdate 2024-12-23T10:29:17Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-001340610
oclc_num 227291220
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical VII, 39 S.
publishDate 1962
publishDateSearch 1962
publishDateSort 1962
record_format marc
series2 Saint Anthony Falls Hydraulic Laboratory <Minneapolis, Minn.>: Technical paper / B.
spellingShingle Song, C. S.
A note on the linear theory of two-dimensional separated flows about thin bodies
Aerodynamic configurations dtict
Airfoils dtict
Boundary layer dtict
Cavitation dtict
Equations dtict
Gas flow dtict
Hydrofoils dtict
Integral equations dtict
Mathematical analysis dtict
Mathematical models dtict
Tails(aircraft) dtict
Theory dtict
Wake dtict
Wedges dtict
Mathematisches Modell
title A note on the linear theory of two-dimensional separated flows about thin bodies
title_auth A note on the linear theory of two-dimensional separated flows about thin bodies
title_exact_search A note on the linear theory of two-dimensional separated flows about thin bodies
title_full A note on the linear theory of two-dimensional separated flows about thin bodies
title_fullStr A note on the linear theory of two-dimensional separated flows about thin bodies
title_full_unstemmed A note on the linear theory of two-dimensional separated flows about thin bodies
title_short A note on the linear theory of two-dimensional separated flows about thin bodies
title_sort a note on the linear theory of two dimensional separated flows about thin bodies
topic Aerodynamic configurations dtict
Airfoils dtict
Boundary layer dtict
Cavitation dtict
Equations dtict
Gas flow dtict
Hydrofoils dtict
Integral equations dtict
Mathematical analysis dtict
Mathematical models dtict
Tails(aircraft) dtict
Theory dtict
Wake dtict
Wedges dtict
Mathematisches Modell
topic_facet Aerodynamic configurations
Airfoils
Boundary layer
Cavitation
Equations
Gas flow
Hydrofoils
Integral equations
Mathematical analysis
Mathematical models
Tails(aircraft)
Theory
Wake
Wedges
Mathematisches Modell
volume_link (DE-604)BV001897413
work_keys_str_mv AT songcs anoteonthelineartheoryoftwodimensionalseparatedflowsaboutthinbodies