Weakly semialgebraic spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Knebusch, Manfred (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 1989
Schriftenreihe:Lecture notes in mathematics 1367
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV001327405
003 DE-604
005 20080221
007 t
008 890619s1989 |||| 00||| eng d
020 |a 3540508155  |9 3-540-50815-5 
020 |a 0387508155  |9 0-387-50815-5 
035 |a (OCoLC)19354502 
035 |a (DE-599)BVBBV001327405 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-91G  |a DE-384  |a DE-739  |a DE-355  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-706  |a DE-634  |a DE-188  |a DE-11  |a DE-83 
050 0 |a QA3 
082 0 |a 514/.224  |2 19 
082 0 |a 510  |2 19 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a MAT 550f  |2 stub 
100 1 |a Knebusch, Manfred  |e Verfasser  |4 aut 
245 1 0 |a Weakly semialgebraic spaces  |c Manfred Knebusch 
264 1 |a Berlin [u.a.]  |b Springer  |c 1989 
300 |a XVIII, 376 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 1367 
650 4 |a Espaces algébriques 
650 4 |a Homotopie 
650 4 |a Algebraic spaces 
650 4 |a Homotopy theory 
650 0 7 |a Schwach semialgebraischer Raum  |0 (DE-588)4209321-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Semialgebraischer Raum  |0 (DE-588)4116475-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Schwach semialgebraischer Raum  |0 (DE-588)4209321-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Semialgebraischer Raum  |0 (DE-588)4116475-1  |D s 
689 1 |5 DE-604 
830 0 |a Lecture notes in mathematics  |v 1367  |w (DE-604)BV000676446  |9 1367 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000802278&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-000802278 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 001z 2001 B 999-1367
DE-BY-TUM_katkey 119899
DE-BY-TUM_media_number 040020153515
_version_ 1816711310541324288
adam_text TABLE OF CONTENTS page CHAPTER IV Basic theory of weakly semialgebraic spaces 1 §1 Definition and construction of weakly semialgebraic spaces 1 §2 Morphisms 15 §3 Subspaces and products 23 §4 Spaces of countable type 36 §5 Proper maps and partially proper maps 42 §6 Polytopic spaces; the one point completion 49 §7 A theorem on inductive limits of spaces 54 §8 Strong quotients; gluing of spaces 60 §9 The weak polytope P(M) 71 §10 The spaces PA(M) and Pf(M) 86 §11 The quotient by a partially proper equivalence relation 99 CHAPTER V Patch complexes, and homotopies again 106 §1 Patch decompositions 106 §2 Some deformation retractions, and related homotopy equivalences 114 §3 Partially finite open coverings 125 §4 Approximation of spaces by weak polytopes 133 §5 The two main theorems on homotopy sets 147 §6 Compressions and n equivalences 152 §7 CW complexes 165 XX page CHAPTER VI Homology and cohomology 182 §1 The basic categories; suspensions and cofibers 183 §2 Reduced cohomology of weak polytopes 194 §3 Cellular homology 2O9 §4 Homology of pairs of weak polytopes 214 §5 Homology of pairs of spaces 224 §6 Excision and limits 233 §7 Representation theorems, pseudo mapping spaces 244 §8 fi spectra 252 CHAPTER VII Simplicial spaces 260 §1 The basic definitions 260 §2 Realization of some simplicial spaces 268 §3 Subspaces 280 §4 Fibre products 292 §5 Quotients 303 §6 Semialgebraic realizations of simplicial sets 311 §7 The spaceISin Ml and singular homology 320 §8 Simplicial homotopy, and singular homology again 331 §9 A group of automorphisms of [0,1] 341 APPENDIX C (to Chapter IV): When is f(M) a basis of open sets of M ? 352 References 355 Symbols 359 Glossary 363 Contents of Chapters I III 375
any_adam_object 1
author Knebusch, Manfred
author_facet Knebusch, Manfred
author_role aut
author_sort Knebusch, Manfred
author_variant m k mk
building Verbundindex
bvnumber BV001327405
callnumber-first Q - Science
callnumber-label QA3
callnumber-raw QA3
callnumber-search QA3
callnumber-sort QA 13
callnumber-subject QA - Mathematics
classification_rvk SI 850
classification_tum MAT 550f
ctrlnum (OCoLC)19354502
(DE-599)BVBBV001327405
dewey-full 514/.224
510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
510 - Mathematics
dewey-raw 514/.224
510
dewey-search 514/.224
510
dewey-sort 3514 3224
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01811nam a2200481 cb4500</leader><controlfield tag="001">BV001327405</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890619s1989 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540508155</subfield><subfield code="9">3-540-50815-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387508155</subfield><subfield code="9">0-387-50815-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)19354502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001327405</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knebusch, Manfred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weakly semialgebraic spaces</subfield><subfield code="c">Manfred Knebusch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 376 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1367</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces algébriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwach semialgebraischer Raum</subfield><subfield code="0">(DE-588)4209321-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semialgebraischer Raum</subfield><subfield code="0">(DE-588)4116475-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schwach semialgebraischer Raum</subfield><subfield code="0">(DE-588)4209321-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Semialgebraischer Raum</subfield><subfield code="0">(DE-588)4116475-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1367</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1367</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000802278&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000802278</subfield></datafield></record></collection>
id DE-604.BV001327405
illustrated Not Illustrated
indexdate 2024-11-25T17:07:22Z
institution BVB
isbn 3540508155
0387508155
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000802278
oclc_num 19354502
open_access_boolean
owner DE-12
DE-91G
DE-BY-TUM
DE-384
DE-739
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-634
DE-188
DE-11
DE-83
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-384
DE-739
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-634
DE-188
DE-11
DE-83
physical XVIII, 376 S.
publishDate 1989
publishDateSearch 1989
publishDateSort 1989
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Knebusch, Manfred
Weakly semialgebraic spaces
Lecture notes in mathematics
Espaces algébriques
Homotopie
Algebraic spaces
Homotopy theory
Schwach semialgebraischer Raum (DE-588)4209321-1 gnd
Semialgebraischer Raum (DE-588)4116475-1 gnd
subject_GND (DE-588)4209321-1
(DE-588)4116475-1
title Weakly semialgebraic spaces
title_auth Weakly semialgebraic spaces
title_exact_search Weakly semialgebraic spaces
title_full Weakly semialgebraic spaces Manfred Knebusch
title_fullStr Weakly semialgebraic spaces Manfred Knebusch
title_full_unstemmed Weakly semialgebraic spaces Manfred Knebusch
title_short Weakly semialgebraic spaces
title_sort weakly semialgebraic spaces
topic Espaces algébriques
Homotopie
Algebraic spaces
Homotopy theory
Schwach semialgebraischer Raum (DE-588)4209321-1 gnd
Semialgebraischer Raum (DE-588)4116475-1 gnd
topic_facet Espaces algébriques
Homotopie
Algebraic spaces
Homotopy theory
Schwach semialgebraischer Raum
Semialgebraischer Raum
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000802278&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT knebuschmanfred weaklysemialgebraicspaces