Principal component analysis in meteorology and oceanography

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Preisendorfer, Rudolph W. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam u.a. Elsevier 1988
Schriftenreihe:Developments in atmospheric science 17.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV001303219
003 DE-604
005 20010112
007 t|
008 890425s1988 xx d||| |||| 00||| eng d
020 |a 0444430148  |9 0-444-43014-8 
035 |a (OCoLC)299848240 
035 |a (DE-599)BVBBV001303219 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-19  |a DE-703  |a DE-20  |a DE-11 
050 0 |a QC871P88 1988 
082 1 |a 551.460 151  |2 22 
084 |a RB 10420  |0 (DE-625)142220:12731  |2 rvk 
100 1 |a Preisendorfer, Rudolph W.  |e Verfasser  |4 aut 
245 1 0 |a Principal component analysis in meteorology and oceanography  |c posthumously comp. and ed. by Curtis D. Mobley 
264 1 |a Amsterdam u.a.  |b Elsevier  |c 1988 
300 |a XVIII, 425 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Developments in atmospheric science  |v 17. 
650 4 |a Analyse factorielle 
650 4 |a Méthodologie - Océanographie 
650 7 |a Météorologie - Modèles mathématiques  |2 ram 
650 4 |a Météorologie - Observations 
650 7 |a Océanographie - Modèles mathématiques  |2 ram 
650 0 7 |a Hauptkomponentenanalyse  |0 (DE-588)4129174-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Meteorologie  |0 (DE-588)4038953-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Komponentenanalyse  |0 (DE-588)4133251-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Faktorenanalyse  |0 (DE-588)4016338-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Meereskunde  |0 (DE-588)4074685-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Meteorologie  |0 (DE-588)4038953-4  |D s 
689 0 1 |a Hauptkomponentenanalyse  |0 (DE-588)4129174-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Meereskunde  |0 (DE-588)4074685-9  |D s 
689 1 1 |a Hauptkomponentenanalyse  |0 (DE-588)4129174-8  |D s 
689 1 |5 DE-604 
689 2 0 |a Meereskunde  |0 (DE-588)4074685-9  |D s 
689 2 1 |a Komponentenanalyse  |0 (DE-588)4133251-9  |D s 
689 2 |5 DE-604 
689 3 0 |a Meteorologie  |0 (DE-588)4038953-4  |D s 
689 3 1 |a Komponentenanalyse  |0 (DE-588)4133251-9  |D s 
689 3 |5 DE-604 
689 4 0 |a Faktorenanalyse  |0 (DE-588)4016338-6  |D s 
689 4 1 |a Meereskunde  |0 (DE-588)4074685-9  |D s 
689 4 |5 DE-604 
689 5 0 |a Faktorenanalyse  |0 (DE-588)4016338-6  |D s 
689 5 1 |a Meteorologie  |0 (DE-588)4038953-4  |D s 
689 5 |5 DE-604 
700 1 |a Mobley, Curtis D.  |e Sonstige  |4 oth 
830 0 |a Developments in atmospheric science  |v 17.  |w (DE-604)BV001891242  |9 17 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000786471&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-000786471 

Datensatz im Suchindex

_version_ 1819624106827448320
adam_text Titel: Principal component analysis in meteorology and oceanography Autor: Preisendorfer, Rudolph W. Jahr: 1988 VII Contents Paj List of Figures.................................................... xvi List of Tables....................................................xvni 1. Introduction.....................................................l a. An Overview of Principal Component Analysis (PCA)..................1 b. Outline of the Book..............................................2 c. A Brief History of PCA..........................................5 d. Acknowledgments...............................................9 2. Algebraic Foundations of PCA..................................11 a. Introductory Example: Bivariate Data Sets..........................11 Monterey, California air temperatures..............................11 Centering and rotating the data set................................12 Variances in the rotated frame....................................14 Principal angles...............................................15 Principal variances.............................................17 Principal covariance............................................17 Principal directions............................................18 Principal components; principal directions as basis vectors.............18 Matrix representation...........................................19 The PCA property..............................................20 Invariance of the total variance under rotation.......................21 Principal variances for standardized data sets.......................22 PCA and estimates of the statistical parameters of normal populations .... 22 PCA and the construction of Monte Carlo experiments.................23 Eigenvalues and eigenvectors of the covariance and scatter matrices......24 b. Principal Component Analysis: Real-valued Scalar Fields..............25 t-centering the data set..........................................26 The scatter probe and the scatter matrix............................26 The eigenstructures of PCA......................................27 The basic data set representations; analysis and synthesis formulas.......30 The PCA property..............................................32 Second-order properties of PCA; the total scatter.....................33 The singular value decomposition (SVD) of a data set..................36 Second-order properties of PCA; correlations........................37 PCA characterized by the PCA property............................38 The asymptotic PCA property and dynamical systems..................39 PCA of spatial composites of data sets..............................40 PCA of temporal composites of data sets............................43 c. Principal Component Analysis: Complex-valued Scalar Fields, and Beyond...............................................44 PCA of complex-valued data sets (C-PCA)..........................44 ?? CONTENTS Complex algebra conventions.....................................45 The scatter probe and scatter matrix for C-PCA......................46 Derivation of the eigenstructures of C-PCA..........................47 The fundamental formulas of C-PCA...............................48 Generalization of PCA to quaternion-valued data sets (Q-PCA)..........49 Matrix representations of complex and quaternion numbers.............52 PCA of matrix-valued data sets (M-PCA)............................54 Reduction of M-PCA to C-PCA form...............................59 d. Bibliographic Notes and Miscellaneous Topics.......................61 Alternate interpretation of the scatter probe.........................62 Numerical calculations of eigenstructures of a scatter matrix............63 Some elementary properties of eigenstructures of a scatter matrix........63 Sample space vs. state space: choosing the dual computation...........64 PCA for continuous domains.....................................67 PCA for continuous domains: the viewpoint of empirical orthogonal functions........................................75 The sixteen possible domain pairs for PCA: abstract PCA..............81 3. Dynamical Origins of PCA......................................89 a. One-dimensional Harmonic Motion................................89 A spring-linked-mass model; general form...........................89 A spring-linked-mass model; special form...........................90 A numerical example of the asymptotic PCA property..................91 Further investigations of the asymptotic PCA property and of EOF s......93 b. Two-dimensional Wave Motion..................................Ill Solution of a two-dimensional damped-wave model...................Ill Demonstration of the asymptotic PCA property (forcing and friction absent)...........................................113 Demonstration of the asymptotic PCA property (forcing and friction present)...........................................114 Physical basis for eigenframe rotations............................117 c. Dynamical Origins of Linear Regression (LR).......................117 From continuous to discrete solutions to the regression model..........118 The linear regression procedure..................................118 Comparison ofLRA and PCA....................................119 d. Random Processes and Karhunen-Loève Analysis....................120 Origins of random processes in linear settings......................120 Karhunen-Loève representation of random data sets and comparison with PCA......................................121 e. Stationary Processes and PCA...................................123 Derivation of the PCA representation of a one-dimensional stationary process via a simple wave model.....................123 Connections between PCA and stationary processes: the case of one dimension............................................129 CONTENTS À÷ Connections between PC A and stationary processes: extension to two dimensions...........................................146 f. Bibliographic Notes...........................................156 4. Extensions of PC A to Multivariate Fields.......................159 a. Categories of Data and Modes of Analysis..........................159 Examples....................................................159 Generalized notation: the concepts of individual and variable in PCA..................................................161 b. Local PCA of a General Vector Field..............................162 The PCA formalism............................................162 Squared correlations...........................................165 Variational origin of the scatter matrix............................166 Examples....................................................166 c. Global PCA of a General Vector Field: Time-Modulation Form........167 The PCA formalism............................................167 Squared correlations...........................................171 Degeneracy of global PCA to local PCA...........................172 Variational origin of the scatter matrix............................172 d. Global PCA of a General Vector Field: Space-Modulation Form........173 The PCA formalism............................................173 Squared correlations...........................................176 Variational origin of the scatter matrix............................176 e. PCA of Spectral Components of a General Vector Field...............178 Fourier analysis of the vector field components......................178 The scatter matrix in the spectral setting...........................179 Example of spectral PCA of a windfield............................181 f. Bibliographic Notes and Miscellaneous Topics......................182 The eight modes of analysis and Cotteli s classifications...............182 Time-modulation PCA as a special case of matrix-valued PCA.........182 Applications to the PCA of wind fields.............................183 Distinction between time-modulation PCA and complex PCA...........184 Applications to the PCA of storm tracks............................187 5. Selection Rules for PCA.......................................192 a. Random Reference Data Sets....................................193 b. Dynamical Origins of the Dominant-Variance Selection Rules..........195 A dynamical model............................................195 Rationale for selection rules.....................................196 ÷ CONTENTS c. Rule A4.....................................................197 Statistical basis and discussion...................................197 ChoiceofX0..................................................199 d. Rule N......................................................199 Statistical basis and discussion...................................199 Adjustments for correlated data: effective sample size................202 Asymptotic eigenvalues for large data sets..........................204 e. Rule M.....................................................205 f. Comments on Dominant-Variance Rules...........................207 g. Dynamical Origins of the Time-History Selection Rules...............207 h. Rule KS2....................................................208 The white spectrum and the cumulative periodogram.................209 Statement of Rule KS2..........................................209 i. Rules ÁÌÑë.................................................211 Fisher s test..................................................211 Siegel stest..................................................212 Statement of Rules ÁÌÑë.......................................214 j. Rule Q......................................................214 k. Selection Rules for Vector-Valued Fields..........................215 Local PCA rules..............................................215 Global PCA (time-modulated) rules...............................217 Global PCA (space-modulated) rules..............................218 1. A Space-map Selection Rule.....................................219 Canonic direction angles.......................................220 Differential relations between unit vectors and canonic direction angles .. 223 An r-tile metric for comparing canonic direction angles...............224 Statistical aspects: critical values for class errors...................226 Statement of the selection rule...................................233 m. Bibliographic Notes and Miscellaneous Topics......................234 Puzzles and problems underlying RuleN; the logarithmic eigenvalue curve...................................................234 Numerical intractability of the classical formulas for the eigenvalues of a random matrix........................................237 Monte Carlo approaches to the eigenvalue distribution problem........240 Comparison of Monte Carlo methods and asymptotic formulas for eigenvalue distributions....................................241 The problem of closely spaced eigenvalues; tests for equal eigenvalues. .. 247 The generalized basis for dominant variance selection rules............248 Parallel work in atomic physics..................................251 CONTENTS XI 6. Factor Analysis (FA) and PCA..................................253 a. Comparison of PCA, LRA, and FA...............................253 Similarities between PCA, LRA, andFA............................253 Dissimilarities between PCA, LRA, andFA.........................254 The usual algebraic form of FA; its PC andLR interpretations.........255 b. The Central Problems of FA.....................................257 The matrix formulation of FA....................................257 The detailed sub-problems of FA.................................259 c. Bibliographic Notes...........................................260 The selection rule problem in FA.................................261 The parameter estimation problem in FA...........................263 7. Diagnostic Procedures via PCA and FA........................265 a. Dual Interpretations of a Data Set: State Space and Sample Space.......265 b. Interpreting Å-frames in PCA State Space..........................267 Example: graphical display of eigenvectors........................267 Rationales for interpreting eigenmaps and time series................269 PCA as a means, rather than an end..............................270 c. Informative and Uninformative Å-frames in PCA State Space..........271 d. Rotating Å-frames in PCA State Space (varimax)....................273 A two-dimensional example of the varimax procedure.................273 The general varimax procedure..................................274 The loss of the PCA property for rotated E-frames...................277 e. Projections onto Å-frames in PCA State Space (procmstes)............278 Derivation of the procrustes technique.............................278 Some observations on the generality of the procrustes technique........281 f. Interpreting A-frames in PCA Sample Space........................282 g. Rotating A-frames in PCA Sample Space (varimax)..................282 h. Projections onto A-frames in PCA Sample Space (procrustes)..........284 i. Detecting Clusters of Points in PCA State or Sample Spaces...........285 Minimal spanning trees.........................................285 Defining cluster pairs, and tests for significance.....................286 j. The Analogous PCA Interpretations and Transformations in FA.........288 XII CONTENTS k. Bibliographic Notes...........................................289 The factor transformation problem in FA...........................289 Chimerical selection rules and the principle of mimicry...............290 8. Canonical Correlation Analysis (CCA) and PCA...............293 a. The Singular Value Decomposition (S VD) of Two Data Sets...........294 b. The Correlation Probe..........................................295 Definitions of the spans of A andB ...............................295 Definition of the correlation probe y(r,s)...........................296 c. Maximizing the Correlation Function y(r,s).........................297 Variational origin of the canonical components......................297 Observations on rank and orthonormality..........................298 d. Canonical Correlations.........................................300 Correlations and orthonormality of the canonical component vectors .... 300 Useful relations for CCA.......................................301 Projector matrix form of canonical correlation theory................302 e. Canonical Component Representations of Data Sets..................304 State space and sample space representations; canonic maps...........304 Properties of the canonic vectors.................................308 f. Selection Rules for CCA........................................309 Geometric constraints on canonical correlations.....................310 Constructing random pairs of data sets............................311 Selection rule formulation.......................................313 g. Bibliographic Notes...........................................315 Hotelling s original formulation of CCA...........................316 Miscellaneous comments.......................................317 Prohaska s PCA of correlation matrices...........................318 9. Linear Regression Analysis (LRA) and PCA....................322 a. Basic Regression Equations.....................................322 Norm probe..................................................322 Variational origin of linear regression.............................323 Projection form of LRA.........................................324 b. Regression Using PCA Frames...................................325 Regressing A andB frames on each other.........................325 Using PCA to avoid singular data sets in LRA.......................326 Using PC selection rules to improve LR models.....................327 CONTENTS XIII c. Regression Using CCA Frames..................................327 Regressing U and V frames on each other..........................327 Regressing Æ on Y, using canonical component vectors................328 Potential truncation representations..............................330 Prediction formulas...........................................331 d. Regression Hindcast Skill.......................................334 Definition of the classic hindcast skill SH...........................334 Analysis of S„ using PCA and CCA concepts........................334 Invariance of the total SH in A and B frame settings..................337 Analysis ofSy and TSH using CCA concepts........................338 Definition of the canonie hindcast skill QH..........................339 e. Regression Signal-to-Noise Ratio.................................340 Noise estimators..............................................340 The signal-to-noise ratio ñ......................................341 The distribution ofQH and confidence intervals for ñ.................342 Significant regression models....................................344 f. Significant Hindcast Skill.......................................344 Significance test for QH.........................................344 intuitive connection between significant models and significant skill.....345 Significance test for SH.........................................346 Effects of autocorrelation on significance tests......................346 Significance tests for total hindcast skill TSH........................347 TSH and the distance between PC frames...........................348 g. Bibliographic Notes...........................................350 10. Statistical-Dynamical Models and PCA.........................352 a. Example 1: A Linear Two-dimensional Damped-wave Model..........352 Continuously extended EOF s....................................353 Applying selection rules to the EOFs..............................354 The statistical-dynamical model..................................355 Integration of the model; initial and boundary conditions..............356 b. Example 2: Linearized Primitive Equations for the Atmosphere and Oceans..............................................357 Eckart s equations............................................357 Continuously extended EOFs....................................359 Applying selection rules to the EOFs..............................359 Evaluating typical terms........................................360 The statistical-dynamical model..................................361 c. Bibliographic Notes...........................................362 XIV CONTENTS 11. The Eigenvector-Partition Problem............................365 a. PCA on Partitioned Domains....................................365 Partitioning the given domain....................................365 Solving the two PCA subproblems................................366 Applying selection rules to the sub-eigenstructures...................366 Optimal combinations of the sub-eigenstructures....................367 Connections between the exact and approximate eigenstructures........368 b. Iterative Improvement of the Optimal Combinations..................369 c. Generalizations of the Eigenvector-Partition Problem.................371 d. Bibliographic Notes...........................................371 12. Complex Harmonic PCA (CH-PCA) of Random Multivariate Fields........................................373 a. Elementary Moving-Pattern Analysis via Real Harmonic Analysis (RHA)..........................................374 b. Single Data Set; RHA first, PCA second: Standing Waves.............375 c. Essentials of Complex Harmonic Analysis (CHA)...................376 d. Single Data Set; PCA first, CHA second: Standing Waves.............379 Analysis; standing waves..............v........................379 Verification of the eigenstructures of S and §.......................380 e. Single Data Set; CHA first, PCA second: Traveling Waves............380 Analysis.....................................................381 Moving waves................................................383 Kinematic basis for CH-PCA....................................384 f. CH-PCA of an Ensemble of Data Sets.............................385 Defining the ensemble of data sets................................385 The scatter probe and the cross power spectrum matrix...............386 Reduction to principal harmonic parts; the PCA property..............387 g. Traveling-Wave Analysis by CH-PCA of Random Multivariate Fields ... 388 The phase spectrum and the gain factor............................388 The power spectrum and the coherence............................389 h. Selection Rules for CH-PCA....................................390 Modifying Rule N.............................................391 Direct application of Rule KS2...................................392 i. Return to the Time Domain in CH-PCA............................393 Convolution and covariance theorems.............................393 CONTENTS ÷í CH-PCA on the time domain....................................394 Physical interpretation of time-domain CH-PCA formulas.............395 Connection between the cross power spectrum matrix and the average- scatter matrix; the distinction between PC A and CH-PCA.........396 j. Bibliographic Notes...........................................397 Brillinger s development of CH-PCA on the time domain..............399 Alternate approaches to the traveling-wave problem..................399 References.........................................................402 Index..............................................................419
any_adam_object 1
author Preisendorfer, Rudolph W.
author_facet Preisendorfer, Rudolph W.
author_role aut
author_sort Preisendorfer, Rudolph W.
author_variant r w p rw rwp
building Verbundindex
bvnumber BV001303219
callnumber-first Q - Science
callnumber-label QC871P88 1988
callnumber-raw QC871P88 1988
callnumber-search QC871P88 1988
callnumber-sort QC 3871 P88 41988
callnumber-subject QC - Physics
classification_rvk RB 10420
ctrlnum (OCoLC)299848240
(DE-599)BVBBV001303219
dewey-full 551.460151
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 551 - Geology, hydrology, meteorology
dewey-raw 551.460 151
dewey-search 551.460 151
dewey-sort 3551.460 3151
dewey-tens 550 - Earth sciences
discipline Geologie / Paläontologie
Geographie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02727nam a2200673 cb4500</leader><controlfield tag="001">BV001303219</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010112 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890425s1988 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444430148</subfield><subfield code="9">0-444-43014-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)299848240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001303219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC871P88 1988</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">551.460 151</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10420</subfield><subfield code="0">(DE-625)142220:12731</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Preisendorfer, Rudolph W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principal component analysis in meteorology and oceanography</subfield><subfield code="c">posthumously comp. and ed. by Curtis D. Mobley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">Elsevier</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 425 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Developments in atmospheric science</subfield><subfield code="v">17.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse factorielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Méthodologie - Océanographie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Météorologie - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Météorologie - Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Océanographie - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komponentenanalyse</subfield><subfield code="0">(DE-588)4133251-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faktorenanalyse</subfield><subfield code="0">(DE-588)4016338-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meereskunde</subfield><subfield code="0">(DE-588)4074685-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Meereskunde</subfield><subfield code="0">(DE-588)4074685-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Meereskunde</subfield><subfield code="0">(DE-588)4074685-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Komponentenanalyse</subfield><subfield code="0">(DE-588)4133251-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Komponentenanalyse</subfield><subfield code="0">(DE-588)4133251-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Faktorenanalyse</subfield><subfield code="0">(DE-588)4016338-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Meereskunde</subfield><subfield code="0">(DE-588)4074685-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Faktorenanalyse</subfield><subfield code="0">(DE-588)4016338-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mobley, Curtis D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Developments in atmospheric science</subfield><subfield code="v">17.</subfield><subfield code="w">(DE-604)BV001891242</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000786471&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000786471</subfield></datafield></record></collection>
id DE-604.BV001303219
illustrated Illustrated
indexdate 2024-12-23T10:12:28Z
institution BVB
isbn 0444430148
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000786471
oclc_num 299848240
open_access_boolean
owner DE-12
DE-19
DE-BY-UBM
DE-703
DE-20
DE-11
owner_facet DE-12
DE-19
DE-BY-UBM
DE-703
DE-20
DE-11
physical XVIII, 425 S. graph. Darst.
publishDate 1988
publishDateSearch 1988
publishDateSort 1988
publisher Elsevier
record_format marc
series Developments in atmospheric science
series2 Developments in atmospheric science
spellingShingle Preisendorfer, Rudolph W.
Principal component analysis in meteorology and oceanography
Developments in atmospheric science
Analyse factorielle
Méthodologie - Océanographie
Météorologie - Modèles mathématiques ram
Météorologie - Observations
Océanographie - Modèles mathématiques ram
Hauptkomponentenanalyse (DE-588)4129174-8 gnd
Meteorologie (DE-588)4038953-4 gnd
Komponentenanalyse (DE-588)4133251-9 gnd
Faktorenanalyse (DE-588)4016338-6 gnd
Meereskunde (DE-588)4074685-9 gnd
subject_GND (DE-588)4129174-8
(DE-588)4038953-4
(DE-588)4133251-9
(DE-588)4016338-6
(DE-588)4074685-9
title Principal component analysis in meteorology and oceanography
title_auth Principal component analysis in meteorology and oceanography
title_exact_search Principal component analysis in meteorology and oceanography
title_full Principal component analysis in meteorology and oceanography posthumously comp. and ed. by Curtis D. Mobley
title_fullStr Principal component analysis in meteorology and oceanography posthumously comp. and ed. by Curtis D. Mobley
title_full_unstemmed Principal component analysis in meteorology and oceanography posthumously comp. and ed. by Curtis D. Mobley
title_short Principal component analysis in meteorology and oceanography
title_sort principal component analysis in meteorology and oceanography
topic Analyse factorielle
Méthodologie - Océanographie
Météorologie - Modèles mathématiques ram
Météorologie - Observations
Océanographie - Modèles mathématiques ram
Hauptkomponentenanalyse (DE-588)4129174-8 gnd
Meteorologie (DE-588)4038953-4 gnd
Komponentenanalyse (DE-588)4133251-9 gnd
Faktorenanalyse (DE-588)4016338-6 gnd
Meereskunde (DE-588)4074685-9 gnd
topic_facet Analyse factorielle
Méthodologie - Océanographie
Météorologie - Modèles mathématiques
Météorologie - Observations
Océanographie - Modèles mathématiques
Hauptkomponentenanalyse
Meteorologie
Komponentenanalyse
Faktorenanalyse
Meereskunde
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000786471&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV001891242
work_keys_str_mv AT preisendorferrudolphw principalcomponentanalysisinmeteorologyandoceanography
AT mobleycurtisd principalcomponentanalysisinmeteorologyandoceanography