Unitary representations of reductive Lie groups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Vogan, David A. 1954- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Princeton, New Jersey Princeton University Press 1987
Schriftenreihe:Annals of mathematics studies number 118
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV000805447
003 DE-604
005 20220630
007 t
008 880920s1987 |||| 00||| eng d
020 |a 0691084815  |c hardcover  |9 0-691-08481-5 
020 |a 0691084823  |c paperback  |9 0-691-08482-3 
035 |a (OCoLC)15860326 
035 |a (DE-599)BVBBV000805447 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-91G  |a DE-384  |a DE-703  |a DE-739  |a DE-355  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA387 
082 0 |a 512/.55  |2 19 
084 |a SI 830  |0 (DE-625)143195:  |2 rvk 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
084 |a MAT 202f  |2 stub 
084 |a 43A80  |2 msc 
084 |a 43A65  |2 msc 
084 |a MAT 225f  |2 stub 
100 1 |a Vogan, David A.  |d 1954-  |e Verfasser  |0 (DE-588)172435285  |4 aut 
245 1 0 |a Unitary representations of reductive Lie groups  |c David A. Vogan, Jr. 
264 1 |a Princeton, New Jersey  |b Princeton University Press  |c 1987 
264 4 |c © 1987 
300 |a x, 308 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Annals of mathematics studies  |v number 118 
650 4 |a Lie, Groupes de 
650 7 |a Lie-groepen  |2 gtt 
650 7 |a Representatie (wiskunde)  |2 gtt 
650 4 |a Représentations de groupes 
650 4 |a Lie groups 
650 4 |a Representations of Lie groups 
650 0 7 |a Darstellungstheorie  |0 (DE-588)4148816-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Unitäre Darstellung  |0 (DE-588)4186906-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Reduktive Lie-Gruppe  |0 (DE-588)4277842-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Reduktive Lie-Gruppe  |0 (DE-588)4277842-6  |D s 
689 0 1 |a Unitäre Darstellung  |0 (DE-588)4186906-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Reduktive Lie-Gruppe  |0 (DE-588)4277842-6  |D s 
689 1 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 1 |5 DE-604 
776 0 8 |i Elektronische Reproduktion  |d 2016  |z 9781400882380 
830 0 |a Annals of mathematics studies  |v number 118  |w (DE-604)BV000000991  |9 118 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000504826&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |q TUB-www 
999 |a oai:aleph.bib-bvb.de:BVB01-000504826 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 001z 2001 A 965-118
DE-BY-TUM_katkey 86373
DE-BY-TUM_media_number 040020034328
_version_ 1816711289953583104
adam_text contents ACKNOWLEDGEMENTS ix INTRODUCTION 3 CHAPTER 1 COMPACT GROUPS AND THE BOREL WEIL THEOREM 19 CHAPTER 2 HARISH CHANDRA MODULES 50 CHAPTER 3 PARABOLIC INDUCTION 62 CHAPTER 4 STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,C) 82 CHAPTER 5 COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY 105 CHAPTER 6 COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY 123 INTERLUDE: THE IDEA OF UNIPOTENT REPRESENTATIONS 159 vii viii CONTENTS CHAPTER 7 FINITE GROUPS AND UNIPOTENT REPRE¬ SENTATIONS 164 CHAPTER 8 LANGLANDS PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS 185 CHAPTER 9 PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS 211 CHAPTER 10 THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS 235 CHAPTER 11 K MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS 258 CHAPTER 12 ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS 284 CHAPTER 13 EXHAUSTION 290 REFERENCES 302
any_adam_object 1
author Vogan, David A. 1954-
author_GND (DE-588)172435285
author_facet Vogan, David A. 1954-
author_role aut
author_sort Vogan, David A. 1954-
author_variant d a v da dav
building Verbundindex
bvnumber BV000805447
callnumber-first Q - Science
callnumber-label QA387
callnumber-raw QA387
callnumber-search QA387
callnumber-sort QA 3387
callnumber-subject QA - Mathematics
classification_rvk SI 830
SK 340
classification_tum MAT 202f
MAT 225f
ctrlnum (OCoLC)15860326
(DE-599)BVBBV000805447
dewey-full 512/.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.55
dewey-search 512/.55
dewey-sort 3512 255
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02390nam a2200613 cb4500</leader><controlfield tag="001">BV000805447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880920s1987 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691084815</subfield><subfield code="c">hardcover</subfield><subfield code="9">0-691-08481-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691084823</subfield><subfield code="c">paperback</subfield><subfield code="9">0-691-08482-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15860326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000805447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43A80</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43A65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172435285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitary representations of reductive Lie groups</subfield><subfield code="c">David A. Vogan, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, New Jersey</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 308 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">number 118</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representatie (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Elektronische Reproduktion</subfield><subfield code="d">2016</subfield><subfield code="z">9781400882380</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">number 118</subfield><subfield code="w">(DE-604)BV000000991</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000504826&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-www</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000504826</subfield></datafield></record></collection>
id DE-604.BV000805447
illustrated Not Illustrated
indexdate 2024-11-25T17:07:22Z
institution BVB
isbn 0691084815
0691084823
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000504826
oclc_num 15860326
open_access_boolean
owner DE-12
DE-91G
DE-BY-TUM
DE-384
DE-703
DE-739
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-83
DE-11
DE-188
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-384
DE-703
DE-739
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-83
DE-11
DE-188
physical x, 308 Seiten
psigel TUB-www
publishDate 1987
publishDateSearch 1987
publishDateSort 1987
publisher Princeton University Press
record_format marc
series Annals of mathematics studies
series2 Annals of mathematics studies
spellingShingle Vogan, David A. 1954-
Unitary representations of reductive Lie groups
Annals of mathematics studies
Lie, Groupes de
Lie-groepen gtt
Representatie (wiskunde) gtt
Représentations de groupes
Lie groups
Representations of Lie groups
Darstellungstheorie (DE-588)4148816-7 gnd
Unitäre Darstellung (DE-588)4186906-0 gnd
Reduktive Lie-Gruppe (DE-588)4277842-6 gnd
subject_GND (DE-588)4148816-7
(DE-588)4186906-0
(DE-588)4277842-6
title Unitary representations of reductive Lie groups
title_auth Unitary representations of reductive Lie groups
title_exact_search Unitary representations of reductive Lie groups
title_full Unitary representations of reductive Lie groups David A. Vogan, Jr.
title_fullStr Unitary representations of reductive Lie groups David A. Vogan, Jr.
title_full_unstemmed Unitary representations of reductive Lie groups David A. Vogan, Jr.
title_short Unitary representations of reductive Lie groups
title_sort unitary representations of reductive lie groups
topic Lie, Groupes de
Lie-groepen gtt
Representatie (wiskunde) gtt
Représentations de groupes
Lie groups
Representations of Lie groups
Darstellungstheorie (DE-588)4148816-7 gnd
Unitäre Darstellung (DE-588)4186906-0 gnd
Reduktive Lie-Gruppe (DE-588)4277842-6 gnd
topic_facet Lie, Groupes de
Lie-groepen
Representatie (wiskunde)
Représentations de groupes
Lie groups
Representations of Lie groups
Darstellungstheorie
Unitäre Darstellung
Reduktive Lie-Gruppe
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000504826&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000991
work_keys_str_mv AT vogandavida unitaryrepresentationsofreductiveliegroups