Traffic processes in queueing networks a Markov renewal approach

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Disney, Ralph L. 1928- (VerfasserIn), Kiessler, Peter C. 1955- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Baltimore [u.a.] Johns Hopkins Univ. Pr. 1987
Schriftenreihe:Johns Hopkins series in the mathematical sciences 4
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV000719240
003 DE-604
005 20230328
007 t
008 880314s1987 a||| |||| 00||| eng d
020 |a 0801834546  |9 0-8018-3454-6 
035 |a (OCoLC)15018421 
035 |a (DE-599)BVBBV000719240 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-91G  |a DE-384  |a DE-739  |a DE-20  |a DE-824  |a DE-706  |a DE-188  |a DE-83 
050 0 |a T57.9 
082 0 |a 519.8/2  |2 19 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 7,41  |2 ssgn 
084 |a MAT 608f  |2 stub 
100 1 |a Disney, Ralph L.  |d 1928-  |e Verfasser  |0 (DE-588)131679716  |4 aut 
245 1 0 |a Traffic processes in queueing networks  |b a Markov renewal approach  |c Ralph L. Disney and Peter C. Kiessler 
264 1 |a Baltimore [u.a.]  |b Johns Hopkins Univ. Pr.  |c 1987 
300 |a XIX, 251 S.  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Johns Hopkins series in the mathematical sciences  |v 4 
650 4 |a Files d'attente, Théorie des 
650 4 |a Markov, Processus de 
650 4 |a Markov processes 
650 4 |a Queuing theory 
650 0 7 |a Erneuerungsprozess  |0 (DE-588)4152833-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Markov-Prozess  |0 (DE-588)4134948-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Warteschlangennetz  |0 (DE-588)4225823-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Wartesystem  |0 (DE-588)4251734-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Markov-Prozess  |0 (DE-588)4134948-9  |D s 
689 0 1 |a Warteschlangennetz  |0 (DE-588)4225823-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Wartesystem  |0 (DE-588)4251734-5  |D s 
689 1 1 |a Erneuerungsprozess  |0 (DE-588)4152833-5  |D s 
689 1 |5 DE-604 
700 1 |a Kiessler, Peter C.  |d 1955-  |e Verfasser  |0 (DE-588)131679740  |4 aut 
830 0 |a Johns Hopkins series in the mathematical sciences  |v 4  |w (DE-604)BV000016231  |9 4 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000449547&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |n oe 
999 |a oai:aleph.bib-bvb.de:BVB01-000449547 
942 1 1 |e 22/bsb  |g 471 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 608f 2001 A 12649
DE-BY-TUM_katkey 82649
DE-BY-TUM_media_number 040010579983
_version_ 1816711286945218560
adam_text Contents List of Figures and Tables ix Preface xi Acknowledgments xvii Chapter 1. Introduction 1 1. Introduction 1 2. Queueing Networks 2 3. An Important Special Case 3 4. Three Examples of Traffic Properties 6 4.1. Burke s Output Traffic Problem 6 4.2. Palm s Overflow Traffic Problem 7 4.3. Traffic in the Queue with Instantaneous Bernoulli Feedback 8 5. Point Processes and Queueing Networks 10 5.7. Point Processes 11 5.2. Marked Point Processes 12 6. Probability Structures 12 6.1. Point Process Structures 13 6.2. Marked Point Process Structures 15 Chapter 2. Background 19 1. Introduction 19 2. Markov Renewal Process Structure 20 3. m Step Transition Functions 22 4. Markov Renewal Kernel 25 5. The Classification of States 27 6. Markov Renewal Equations 29 7. Limit Theorems 32 8. Semi Markov Processes 33 9. Markov Chains, Markov Renewal Processes, and Stationarity 34 10. Examples 36 11. Equivalence 46 12. Lumpability 53 13. Reversibility and Dynamic Reversibility 55 13.1. Reversing Markov Chains 56 v vi Contents 13.2. Reversing Markov Processes 57 13.3. Dynamically Reversible Markov Processes 57 13.4. Reversing Markov Renewal Processes 57 14. Bibliographic Notes 59 Chapter 3. Examples of Traffic Processes 60 1. Introduction 60 2. A Simulation Analysis of Simple Networks 61 2.1. A Three Node Cyclic Closed Network 62 2.2. Delayed Feedback—Closed Network 63 2.3. Delayed Feedback—Open Network 63 2.4. Positive Autocorrelations in Closed Networks 65 3. Outputs from the Ml Mil Queue 67 4. The MIM/l Overflow Queue with L = 0 70 5. Output from the MIMIML Queue 76 6. A Queue with Delayed Feedback 79 7. Crosscorrelations in Traffic Processes in the Overflow Queue 81 8. Bibliographic Notes 85 Chapter 4. Traffic Processes in Markov Networks 86 1. Introduction 86 2. Preliminaries 87 3. The Embedded Markov Renewal Process 89 4. Open Jackson Networks 95 5. The Reversibility of Jackson Networks 97 6. Traffic in Reversible Jackson Networks 97 7. Jackson Networks with Instantaneous Feedback 100 8. Closed Jackson Networks 103 9. Traffic in Closed Jackson Networks 105 10. Symmetric Queueing Networks 109 11. Extensions to Networks Where the State Process Is Not Dynamically Reversible 114 12. Some Implications 118 12.1. The Reversibility of Queue Length Processes and Traffic Processes 118 12.2. The Reversibility of Point Processes 119 12.3. Reversibility and Operations on Random Processes 119 12.4. Reversible Traffic Processes in Nonreversible Networks 120 12.5. Implications 121 13. Special Cases 122 14. Bibliographic Notes 123 14.1. State Processes 123 Contents vii 14.2. Traffic Processes in Queueing Networks 124 Chapter 5. Tbe Decomposition of Traffic Processes 126 1. Introduction 126 2. Overflow Queueing Networks 127 3. Semi Markov Switches 132 4. The Classification of States 133 5. A Special Case 136 6. The cth Output Process 141 7. Examples 149 7.1. Decomposing a Compound Poisson Process 149 7.2. Decomposing a Markov Jump Process Whose Jumps Are Independent of the Point Process 151 8. A Generalization for Traffic Processes 153 9. Two Approaches Compared 159 10. An Example 160 11. Bibliographic Notes 166 Chapter 6. Output Processes 167 1. Introduction 167 2. Outputs from Birth Death Queues 167 3. Outputs from MIGIIIIL oo Queues 171 4. Second Order Statistical Properties of M/GI/1IL , oo Output Processes—Covariances, Lag 1 177 5. The Ml Mil Queue with Instantaneous Bernoulli Feedback 182 5.7. The Arrival Process 185 5.2. The Output Process 186 5.3. The Input Process 188 5.4. The Feedback Process 188 5.5. Comparisons 189 6. The Queue with Delayed Feedback 190 7. General Delay 196 8. Bibliographic Notes 198 Chapter 7. Decomposing Point and Marked Point Processes: Crosscovariance and Crosscorrelation Analysis 200 1. Introduction 200 2. Crosscorrelation and Crosscovariance 201 2.1. Decomposing a Point Process 201 2.2. Decomposing a Marked Point Process 202 3. Crosscovariance: A Point Process Decomposed by a Bernoulli Process 203 4. Decomposing Stationary Renewal Processes 205 5. Decomposing Synchronous Renewal Processes 207 viii Contents 6. Interval Count Relations 209 7. State Dependent Decomposing of a Markov Renewal Process 211 8. Two Examples 214 9. Variances of NA(t), and NB(t) 217 10. Bernoulli Decomposing of Alternating Markov Processes 219 11. Markov Chain Decomposing of Renewal Processes 221 12. Bibliographic Notes 223 Appendix. Point Processes and Reversibility 224 1. Introduction 224 2. Point Processes 225 3. Marked Point Processes 228 4. Stationarity 229 5. Palm Distributions 229 6. Markov Renewal Processes 231 7. Reversing Random Marked Point Processes 232 8. Dynamic Reversibility and Dynamically Reversed Processes 237 9. Bibliographic Notes 240 References 241 Index 245
any_adam_object 1
author Disney, Ralph L. 1928-
Kiessler, Peter C. 1955-
author_GND (DE-588)131679716
(DE-588)131679740
author_facet Disney, Ralph L. 1928-
Kiessler, Peter C. 1955-
author_role aut
aut
author_sort Disney, Ralph L. 1928-
author_variant r l d rl rld
p c k pc pck
building Verbundindex
bvnumber BV000719240
callnumber-first T - Technology
callnumber-label T57
callnumber-raw T57.9
callnumber-search T57.9
callnumber-sort T 257.9
callnumber-subject T - General Technology
classification_rvk SK 820
classification_tum MAT 608f
ctrlnum (OCoLC)15018421
(DE-599)BVBBV000719240
dewey-full 519.8/2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.8/2
dewey-search 519.8/2
dewey-sort 3519.8 12
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02225nam a2200553 cb4500</leader><controlfield tag="001">BV000719240</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230328 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880314s1987 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0801834546</subfield><subfield code="9">0-8018-3454-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15018421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000719240</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57.9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.8/2</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,41</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 608f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Disney, Ralph L.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131679716</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Traffic processes in queueing networks</subfield><subfield code="b">a Markov renewal approach</subfield><subfield code="c">Ralph L. Disney and Peter C. Kiessler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Baltimore [u.a.]</subfield><subfield code="b">Johns Hopkins Univ. Pr.</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 251 S.</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Johns Hopkins series in the mathematical sciences</subfield><subfield code="v">4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Files d'attente, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov, Processus de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erneuerungsprozess</subfield><subfield code="0">(DE-588)4152833-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Warteschlangennetz</subfield><subfield code="0">(DE-588)4225823-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wartesystem</subfield><subfield code="0">(DE-588)4251734-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Warteschlangennetz</subfield><subfield code="0">(DE-588)4225823-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wartesystem</subfield><subfield code="0">(DE-588)4251734-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erneuerungsprozess</subfield><subfield code="0">(DE-588)4152833-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiessler, Peter C.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131679740</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Johns Hopkins series in the mathematical sciences</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV000016231</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000449547&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000449547</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="e">22/bsb</subfield><subfield code="g">471</subfield></datafield></record></collection>
id DE-604.BV000719240
illustrated Illustrated
indexdate 2024-11-25T17:07:22Z
institution BVB
isbn 0801834546
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000449547
oclc_num 15018421
open_access_boolean
owner DE-12
DE-91G
DE-BY-TUM
DE-384
DE-739
DE-20
DE-824
DE-706
DE-188
DE-83
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-384
DE-739
DE-20
DE-824
DE-706
DE-188
DE-83
physical XIX, 251 S. Illustrationen
publishDate 1987
publishDateSearch 1987
publishDateSort 1987
publisher Johns Hopkins Univ. Pr.
record_format marc
series Johns Hopkins series in the mathematical sciences
series2 Johns Hopkins series in the mathematical sciences
spellingShingle Disney, Ralph L. 1928-
Kiessler, Peter C. 1955-
Traffic processes in queueing networks a Markov renewal approach
Johns Hopkins series in the mathematical sciences
Files d'attente, Théorie des
Markov, Processus de
Markov processes
Queuing theory
Erneuerungsprozess (DE-588)4152833-5 gnd
Markov-Prozess (DE-588)4134948-9 gnd
Warteschlangennetz (DE-588)4225823-6 gnd
Wartesystem (DE-588)4251734-5 gnd
subject_GND (DE-588)4152833-5
(DE-588)4134948-9
(DE-588)4225823-6
(DE-588)4251734-5
title Traffic processes in queueing networks a Markov renewal approach
title_auth Traffic processes in queueing networks a Markov renewal approach
title_exact_search Traffic processes in queueing networks a Markov renewal approach
title_full Traffic processes in queueing networks a Markov renewal approach Ralph L. Disney and Peter C. Kiessler
title_fullStr Traffic processes in queueing networks a Markov renewal approach Ralph L. Disney and Peter C. Kiessler
title_full_unstemmed Traffic processes in queueing networks a Markov renewal approach Ralph L. Disney and Peter C. Kiessler
title_short Traffic processes in queueing networks
title_sort traffic processes in queueing networks a markov renewal approach
title_sub a Markov renewal approach
topic Files d'attente, Théorie des
Markov, Processus de
Markov processes
Queuing theory
Erneuerungsprozess (DE-588)4152833-5 gnd
Markov-Prozess (DE-588)4134948-9 gnd
Warteschlangennetz (DE-588)4225823-6 gnd
Wartesystem (DE-588)4251734-5 gnd
topic_facet Files d'attente, Théorie des
Markov, Processus de
Markov processes
Queuing theory
Erneuerungsprozess
Markov-Prozess
Warteschlangennetz
Wartesystem
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000449547&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000016231
work_keys_str_mv AT disneyralphl trafficprocessesinqueueingnetworksamarkovrenewalapproach
AT kiesslerpeterc trafficprocessesinqueueingnetworksamarkovrenewalapproach