Analysis on real and complex manifolds

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Narasimhan, Raghavan 1937- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] North-Holland 1985
Ausgabe:1. ed., 3. print.
Schriftenreihe:North-Holland mathematical library 35
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV000652361
003 DE-604
005 20111117
007 t|
008 871026s1985 xx |||| 00||| eng d
020 |a 0444877762  |9 0-444-87776-2 
035 |a (OCoLC)246747916 
035 |a (DE-599)BVBBV000652361 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-384  |a DE-824  |a DE-355  |a DE-739  |a DE-11 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
100 1 |a Narasimhan, Raghavan  |d 1937-  |e Verfasser  |0 (DE-588)107634015  |4 aut 
245 1 0 |a Analysis on real and complex manifolds  |c R. Narasimhan 
250 |a 1. ed., 3. print. 
264 1 |a Amsterdam [u.a.]  |b North-Holland  |c 1985 
300 |a XIV, 246 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a North-Holland mathematical library  |v 35 
650 4 |a Differenzierbare Mannigfaltigkeit - Globale Analysis 
650 0 7 |a Komplexe Mannigfaltigkeit  |0 (DE-588)4031996-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialoperator  |0 (DE-588)4012251-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Differenzierbare Mannigfaltigkeit  |0 (DE-588)4012269-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Analysis  |0 (DE-588)4001865-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |D s 
689 0 1 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Komplexe Mannigfaltigkeit  |0 (DE-588)4031996-9  |D s 
689 1 |5 DE-604 
689 2 0 |a Analysis  |0 (DE-588)4001865-9  |D s 
689 2 1 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |D s 
689 2 |8 1\p  |5 DE-604 
689 3 0 |a Differenzierbare Mannigfaltigkeit  |0 (DE-588)4012269-4  |D s 
689 3 |8 2\p  |5 DE-604 
689 4 0 |a Differentialoperator  |0 (DE-588)4012251-7  |D s 
689 4 |8 3\p  |5 DE-604 
830 0 |a North-Holland mathematical library  |v 35  |w (DE-604)BV000005206  |9 35 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000406506&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-000406506 

Datensatz im Suchindex

DE-BY-UBR_call_number 84/SK 350 N218(2.85)
DE-BY-UBR_katkey 270700
DE-BY-UBR_location 82
DE-BY-UBR_media_number 069009913445
_version_ 1822728941855571968
adam_text Contents Preface V Preface to the third printing VII Chapter 1. Differentiable functions in R I § 1.1 Taylor s formula 2 §1.2 Partitions of unity 11 § 1.3 Inverse functions, implicit functions and the rank theorem 13 §1.4 Sard s theorem and functional dependence .... 19 §1.5 Borel s theorem on Taylor series. . . 28 §1.6 Whitney s approximation theorem 31 § 1.7 An approximation theorem for holomorphic func¬ tions 38 §1.8 Ordinary differential equations 43 Chapter 2. Manifolds 52 § 2.1 Basic definitions 52 §2.2 The tangent and cotangent bundles 60 § 2.3 Grassmann manifolds 66 §2.4 Vector fields and differential forms 69 § 2.5 Submanifolds 80 § 2.6 Exterior differentiation 86 § 2.7 Orientation 94 § 2.8 Manifolds with boundary 96 §2.9 Integration 100 XIV CONTENTS §2.10 One parameter groups 106 §2.11 The Frobenius theorem 112 §2.12 Almost complex manifolds 122 §2.13 The lemmata of Poincare and Grothendieck. . . . 128 §2.14 Applications: Hartogs continuation theorem and the Oka Weil theorem 134 §2.15 Immersions and imbeddings: Whitney s theorems . 141 §2.16 Thorn s transversality theorem 150 Chapter 3. Linear elliptic differential operators 155 §3.1 Vector bundles 155 §3.2 Fourier transforms 164 §3.3 Linear differential operators 171 §3.4 The Sobolev spaces 184 § 3.5 The lemmata of Rellich and Sobolev 191 § 3.6 The inequalities of Garding and Friedrichs .... 200 § 3.7 Elliptic operators with C00 coefficients: the regular¬ ity theorem 211 § 3.8 Elliptic operators with analytic coefficients .... 218 §3.9 The finiteness theorem 226 §3.10 The approximation theorem and its application to open Riemann surfaces 234 References 242 Subject index 245
any_adam_object 1
author Narasimhan, Raghavan 1937-
author_GND (DE-588)107634015
author_facet Narasimhan, Raghavan 1937-
author_role aut
author_sort Narasimhan, Raghavan 1937-
author_variant r n rn
building Verbundindex
bvnumber BV000652361
classification_rvk SK 350
ctrlnum (OCoLC)246747916
(DE-599)BVBBV000652361
discipline Mathematik
edition 1. ed., 3. print.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02523nam a2200577 cb4500</leader><controlfield tag="001">BV000652361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111117 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">871026s1985 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444877762</subfield><subfield code="9">0-444-87776-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246747916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000652361</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on real and complex manifolds</subfield><subfield code="c">R. Narasimhan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed., 3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 246 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differenzierbare Mannigfaltigkeit - Globale Analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">35</subfield><subfield code="w">(DE-604)BV000005206</subfield><subfield code="9">35</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000406506&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000406506</subfield></datafield></record></collection>
id DE-604.BV000652361
illustrated Not Illustrated
indexdate 2024-12-23T10:01:19Z
institution BVB
isbn 0444877762
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000406506
oclc_num 246747916
open_access_boolean
owner DE-12
DE-384
DE-824
DE-355
DE-BY-UBR
DE-739
DE-11
owner_facet DE-12
DE-384
DE-824
DE-355
DE-BY-UBR
DE-739
DE-11
physical XIV, 246 S.
publishDate 1985
publishDateSearch 1985
publishDateSort 1985
publisher North-Holland
record_format marc
series North-Holland mathematical library
series2 North-Holland mathematical library
spellingShingle Narasimhan, Raghavan 1937-
Analysis on real and complex manifolds
North-Holland mathematical library
Differenzierbare Mannigfaltigkeit - Globale Analysis
Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd
Mannigfaltigkeit (DE-588)4037379-4 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
Differentialoperator (DE-588)4012251-7 gnd
Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd
Analysis (DE-588)4001865-9 gnd
subject_GND (DE-588)4031996-9
(DE-588)4037379-4
(DE-588)4018916-8
(DE-588)4012251-7
(DE-588)4012269-4
(DE-588)4001865-9
title Analysis on real and complex manifolds
title_auth Analysis on real and complex manifolds
title_exact_search Analysis on real and complex manifolds
title_full Analysis on real and complex manifolds R. Narasimhan
title_fullStr Analysis on real and complex manifolds R. Narasimhan
title_full_unstemmed Analysis on real and complex manifolds R. Narasimhan
title_short Analysis on real and complex manifolds
title_sort analysis on real and complex manifolds
topic Differenzierbare Mannigfaltigkeit - Globale Analysis
Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd
Mannigfaltigkeit (DE-588)4037379-4 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
Differentialoperator (DE-588)4012251-7 gnd
Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd
Analysis (DE-588)4001865-9 gnd
topic_facet Differenzierbare Mannigfaltigkeit - Globale Analysis
Komplexe Mannigfaltigkeit
Mannigfaltigkeit
Funktionalanalysis
Differentialoperator
Differenzierbare Mannigfaltigkeit
Analysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000406506&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000005206
work_keys_str_mv AT narasimhanraghavan analysisonrealandcomplexmanifolds