Analysis on real and complex manifolds
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
North-Holland
1985
|
Ausgabe: | 1. ed., 3. print. |
Schriftenreihe: | North-Holland mathematical library
35 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000652361 | ||
003 | DE-604 | ||
005 | 20111117 | ||
007 | t| | ||
008 | 871026s1985 xx |||| 00||| eng d | ||
020 | |a 0444877762 |9 0-444-87776-2 | ||
035 | |a (OCoLC)246747916 | ||
035 | |a (DE-599)BVBBV000652361 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-824 |a DE-355 |a DE-739 |a DE-11 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Narasimhan, Raghavan |d 1937- |e Verfasser |0 (DE-588)107634015 |4 aut | |
245 | 1 | 0 | |a Analysis on real and complex manifolds |c R. Narasimhan |
250 | |a 1. ed., 3. print. | ||
264 | 1 | |a Amsterdam [u.a.] |b North-Holland |c 1985 | |
300 | |a XIV, 246 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematical library |v 35 | |
650 | 4 | |a Differenzierbare Mannigfaltigkeit - Globale Analysis | |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 2 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
689 | 4 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 4 | |8 3\p |5 DE-604 | |
830 | 0 | |a North-Holland mathematical library |v 35 |w (DE-604)BV000005206 |9 35 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000406506&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-000406506 |
Datensatz im Suchindex
DE-BY-UBR_call_number | 84/SK 350 N218(2.85) |
---|---|
DE-BY-UBR_katkey | 270700 |
DE-BY-UBR_location | 82 |
DE-BY-UBR_media_number | 069009913445 |
_version_ | 1822728941855571968 |
adam_text | Contents
Preface V
Preface to the third printing VII
Chapter 1. Differentiable functions in R I
§ 1.1 Taylor s formula 2
§1.2 Partitions of unity 11
§ 1.3 Inverse functions, implicit functions and the rank
theorem 13
§1.4 Sard s theorem and functional dependence .... 19
§1.5 Borel s theorem on Taylor series. . . 28
§1.6 Whitney s approximation theorem 31
§ 1.7 An approximation theorem for holomorphic func¬
tions 38
§1.8 Ordinary differential equations 43
Chapter 2. Manifolds 52
§ 2.1 Basic definitions 52
§2.2 The tangent and cotangent bundles 60
§ 2.3 Grassmann manifolds 66
§2.4 Vector fields and differential forms 69
§ 2.5 Submanifolds 80
§ 2.6 Exterior differentiation 86
§ 2.7 Orientation 94
§ 2.8 Manifolds with boundary 96
§2.9 Integration 100
XIV CONTENTS
§2.10 One parameter groups 106
§2.11 The Frobenius theorem 112
§2.12 Almost complex manifolds 122
§2.13 The lemmata of Poincare and Grothendieck. . . . 128
§2.14 Applications: Hartogs continuation theorem and
the Oka Weil theorem 134
§2.15 Immersions and imbeddings: Whitney s theorems . 141
§2.16 Thorn s transversality theorem 150
Chapter 3. Linear elliptic differential operators 155
§3.1 Vector bundles 155
§3.2 Fourier transforms 164
§3.3 Linear differential operators 171
§3.4 The Sobolev spaces 184
§ 3.5 The lemmata of Rellich and Sobolev 191
§ 3.6 The inequalities of Garding and Friedrichs .... 200
§ 3.7 Elliptic operators with C00 coefficients: the regular¬
ity theorem 211
§ 3.8 Elliptic operators with analytic coefficients .... 218
§3.9 The finiteness theorem 226
§3.10 The approximation theorem and its application to
open Riemann surfaces 234
References 242
Subject index 245
|
any_adam_object | 1 |
author | Narasimhan, Raghavan 1937- |
author_GND | (DE-588)107634015 |
author_facet | Narasimhan, Raghavan 1937- |
author_role | aut |
author_sort | Narasimhan, Raghavan 1937- |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV000652361 |
classification_rvk | SK 350 |
ctrlnum | (OCoLC)246747916 (DE-599)BVBBV000652361 |
discipline | Mathematik |
edition | 1. ed., 3. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02523nam a2200577 cb4500</leader><controlfield tag="001">BV000652361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111117 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">871026s1985 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444877762</subfield><subfield code="9">0-444-87776-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246747916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000652361</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on real and complex manifolds</subfield><subfield code="c">R. Narasimhan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed., 3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 246 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differenzierbare Mannigfaltigkeit - Globale Analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">35</subfield><subfield code="w">(DE-604)BV000005206</subfield><subfield code="9">35</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000406506&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000406506</subfield></datafield></record></collection> |
id | DE-604.BV000652361 |
illustrated | Not Illustrated |
indexdate | 2024-12-23T10:01:19Z |
institution | BVB |
isbn | 0444877762 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000406506 |
oclc_num | 246747916 |
open_access_boolean | |
owner | DE-12 DE-384 DE-824 DE-355 DE-BY-UBR DE-739 DE-11 |
owner_facet | DE-12 DE-384 DE-824 DE-355 DE-BY-UBR DE-739 DE-11 |
physical | XIV, 246 S. |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | North-Holland |
record_format | marc |
series | North-Holland mathematical library |
series2 | North-Holland mathematical library |
spellingShingle | Narasimhan, Raghavan 1937- Analysis on real and complex manifolds North-Holland mathematical library Differenzierbare Mannigfaltigkeit - Globale Analysis Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Funktionalanalysis (DE-588)4018916-8 gnd Differentialoperator (DE-588)4012251-7 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4031996-9 (DE-588)4037379-4 (DE-588)4018916-8 (DE-588)4012251-7 (DE-588)4012269-4 (DE-588)4001865-9 |
title | Analysis on real and complex manifolds |
title_auth | Analysis on real and complex manifolds |
title_exact_search | Analysis on real and complex manifolds |
title_full | Analysis on real and complex manifolds R. Narasimhan |
title_fullStr | Analysis on real and complex manifolds R. Narasimhan |
title_full_unstemmed | Analysis on real and complex manifolds R. Narasimhan |
title_short | Analysis on real and complex manifolds |
title_sort | analysis on real and complex manifolds |
topic | Differenzierbare Mannigfaltigkeit - Globale Analysis Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Funktionalanalysis (DE-588)4018916-8 gnd Differentialoperator (DE-588)4012251-7 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Analysis (DE-588)4001865-9 gnd |
topic_facet | Differenzierbare Mannigfaltigkeit - Globale Analysis Komplexe Mannigfaltigkeit Mannigfaltigkeit Funktionalanalysis Differentialoperator Differenzierbare Mannigfaltigkeit Analysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000406506&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005206 |
work_keys_str_mv | AT narasimhanraghavan analysisonrealandcomplexmanifolds |