Topoi the categorial analysis of logic

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Goldblatt, Robert 1949- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] North Holland 1984
Ausgabe:Rev. ed.
Schriftenreihe:Studies in logic and the foundations of mathematics 98
Schlagworte:
Online-Zugang:kostenfrei
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV000163896
003 DE-604
005 20221212
007 t|
008 870612s1984 xx |||| 00||| eng d
020 |a 0444867112  |9 0-444-86711-2 
035 |a (OCoLC)239761931 
035 |a (DE-599)BVBBV000163896 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-91G  |a DE-703  |a DE-739  |a DE-355  |a DE-188  |a DE-706  |a DE-11 
050 0 |a QA169 
082 0 |a 512.55 
084 |a SK 130  |0 (DE-625)143216:  |2 rvk 
084 |a SK 230  |0 (DE-625)143225:  |2 rvk 
084 |a SK 320  |0 (DE-625)143231:  |2 rvk 
084 |a MAT 189f  |2 stub 
084 |a MAT 039f  |2 stub 
100 1 |a Goldblatt, Robert  |d 1949-  |e Verfasser  |0 (DE-588)1025661435  |4 aut 
245 1 0 |a Topoi  |b the categorial analysis of logic  |c Robert Goldblatt 
250 |a Rev. ed. 
264 1 |a Amsterdam [u.a.]  |b North Holland  |c 1984 
300 |a XVI, 551 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Studies in logic and the foundations of mathematics  |v 98 
650 7 |a Topos (mathématiques)  |2 ram 
650 0 7 |a Mengenlehre  |0 (DE-588)4074715-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Topos  |g Mathematik  |0 (DE-588)4185717-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Topos  |0 (DE-588)4127974-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Logik  |0 (DE-588)4036202-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Kategorientheorie  |0 (DE-588)4120552-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kategorie  |g Mathematik  |0 (DE-588)4129930-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Kategorie  |g Mathematik  |0 (DE-588)4129930-9  |D s 
689 0 1 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Topos  |g Mathematik  |0 (DE-588)4185717-3  |D s 
689 1 |5 DE-604 
689 2 0 |a Topos  |0 (DE-588)4127974-8  |D s 
689 2 1 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 2 |5 DE-604 
689 3 0 |a Kategorientheorie  |0 (DE-588)4120552-2  |D s 
689 3 1 |a Logik  |0 (DE-588)4036202-4  |D s 
689 3 |8 1\p  |5 DE-604 
689 4 0 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 4 1 |a Kategorie  |g Mathematik  |0 (DE-588)4129930-9  |D s 
689 4 2 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 4 |5 DE-604 
830 0 |a Studies in logic and the foundations of mathematics  |v 98  |w (DE-604)BV000893472  |9 98 
856 4 1 |u http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=gold010  |z kostenfrei  |3 Volltext 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000092971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
912 |a digit 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-000092971 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 039 2001 A 15743(2)
DE-BY-TUM_katkey 56441
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010699284
_version_ 1820878217372762112
adam_text Preface ix Preface to Second Edition xiv Prospectus 1 Chapter 1. Mathematics = Set Theory? 6 1. Set theory 6 2. Foundations of mathematics . 13 3. Mathematics as set theory . . 14 Chapter 2. What Categories Are 17 1. Functions are sets? 17 2. Composition of functions ... 20 3. Categories: first examples ... 23 4. The pathology of abstraction . . 25 5. Basic examples 26 Chapter 3. Arrows Instead of Epsilon 37 1. Monic arrows 37 2. Epic arrows 39 3. Iso arrows 39 4. Isomorphic objects 41 5. Initial objects 43 6. Terminal objects 44 7. Duality 45 8. Products 46 9. Co products 54 10. Equalisers 56 11. Limits and co limits 58 12. Co equalisers 60 13. The pullback 63 14. Pushouts 68 15. Completeness 69 16. Exponentiation 70 Chapter 4. Introducing Topoi 75 1. Subobjects 75 2. Classifying subobjects 79 3. Definition of topos 84 4. First examples 85 5. Bundles and sheaves 88 6. Monoid actions 100 7. Power objects 103 8. O and comprehension 107 Chapter 5. Topos Structure: First Steps 109 1. Monies equalise 109 2. Images of arrows 110 3. Fundamental facts 114 4. Extensionality and bivalence . . 115 5. Monies and epics by elements . 123 Chapter 6. Logic Classically Conceived 125 1. Motivating topos logic .... 125 2. Propositions and truth values . 126 3. The propositional calculus ... 129 4. Boolean algebra 133 5. Algebraic semantics 135 6. Truth functions as arrows ... 136 7. ^ semantics 140 Chapter 7. Algebra of Subobjects 146 1. Complement, intersection, union 146 2. Sub(d) as a lattice 151 3. Boolean topoi 156 4. Internal vs. external 159 5. Implication and its implications 162 6. Filling two gaps 166 7. Extensionality revisited .... 168 Chapter 8. Intuitionism and its Logic 173 1. Construct!vist philosophy ... 173 2. Heyting s calculus 177 3. Heyting algebras 178 4. Kripke semantics 187 Chapter 9. Functors 194 1. The concept of functor .... 194 2. Natural transformations .... 198 3. Functor categories 202 Chapter 10. Set Concepts and Validity 211 1. Set concepts 211 2. Heyting algebras in P 213 3. The subobject classifier in Set . 215 4. The truth arrows 221 5. Validity 223 6. Applications 227 Chapter 11. Elementary Truth 230 1. The idea of a first order lan¬ guage 230 2. Formal language and seman¬ tics 234 3. Axiomatics 237 4. Models in a topos 238 5. Substitution and soundness . . 249 6. Kripke models 256 7. Completeness 264 8. Existence and free logic . . . 266 9. Heyting valued sets 274 10. High order logic 286 Chapter 12. Categorial Set Theory 289 1. Axioms of choice 290 2. Natural numbers objects . . . 301 3. Formal set theory 305 4. Transitive sets 313 5. Set objects 320 6. Equivalence of models .... 328 Chapter 13. Arithmetic 332 1. Topoi as foundations 332 2. Primitive recursion 335 3. Peano postulates 347 Chapter 14. Local Truth 359 1. Stacks and sheaves 359 2. Classifying stacks and sheaves . 368 3. GrothendieCk topoi 374 4. Elementary sites 378 5. Geometric modality 381 6. Kripke Joyal semantics .... 386 7. Sheaves as complete fl sets . . 388 8. Number systems as sheaves . . 413 Chapter 15. Adjointness and Quantifiers 438 1. Adjunctions 438 2. Some adjoint situations .... 442 3. The fundamental theorem . . . 449 4. Quantifiers . 453 Chapter 16. Logical Geometry 458 1. Preservation and reflection . . . 459 2. Geometric morphisms 463 3. Internal logic 483 4. Geometric logic 493 5. Theories as sites 504 References 521 Catalogue of Notation . . 531 Index of Definitions .... 541
any_adam_object 1
author Goldblatt, Robert 1949-
author_GND (DE-588)1025661435
author_facet Goldblatt, Robert 1949-
author_role aut
author_sort Goldblatt, Robert 1949-
author_variant r g rg
building Verbundindex
bvnumber BV000163896
callnumber-first Q - Science
callnumber-label QA169
callnumber-raw QA169
callnumber-search QA169
callnumber-sort QA 3169
callnumber-subject QA - Mathematics
classification_rvk SK 130
SK 230
SK 320
classification_tum MAT 189f
MAT 039f
collection digit
ctrlnum (OCoLC)239761931
(DE-599)BVBBV000163896
dewey-full 512.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.55
dewey-search 512.55
dewey-sort 3512.55
dewey-tens 510 - Mathematics
discipline Mathematik
edition Rev. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02852nam a2200697 cb4500</leader><controlfield tag="001">BV000163896</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221212 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">870612s1984 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444867112</subfield><subfield code="9">0-444-86711-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)239761931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000163896</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA169</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 189f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 039f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldblatt, Robert</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025661435</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topoi</subfield><subfield code="b">the categorial analysis of logic</subfield><subfield code="c">Robert Goldblatt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North Holland</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 551 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">98</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topos (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topos</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4185717-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topos</subfield><subfield code="0">(DE-588)4127974-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topos</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4185717-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Topos</subfield><subfield code="0">(DE-588)4127974-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="2"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">98</subfield><subfield code="w">(DE-604)BV000893472</subfield><subfield code="9">98</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=gold010</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000092971&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">digit</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000092971</subfield></datafield></record></collection>
id DE-604.BV000163896
illustrated Not Illustrated
indexdate 2024-12-23T09:53:43Z
institution BVB
isbn 0444867112
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000092971
oclc_num 239761931
open_access_boolean 1
owner DE-12
DE-91G
DE-BY-TUM
DE-703
DE-739
DE-355
DE-BY-UBR
DE-188
DE-706
DE-11
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-703
DE-739
DE-355
DE-BY-UBR
DE-188
DE-706
DE-11
physical XVI, 551 S.
psigel digit
publishDate 1984
publishDateSearch 1984
publishDateSort 1984
publisher North Holland
record_format marc
series Studies in logic and the foundations of mathematics
series2 Studies in logic and the foundations of mathematics
spellingShingle Goldblatt, Robert 1949-
Topoi the categorial analysis of logic
Studies in logic and the foundations of mathematics
Topos (mathématiques) ram
Mengenlehre (DE-588)4074715-3 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Topos Mathematik (DE-588)4185717-3 gnd
Topos (DE-588)4127974-8 gnd
Logik (DE-588)4036202-4 gnd
Kategorientheorie (DE-588)4120552-2 gnd
Kategorie Mathematik (DE-588)4129930-9 gnd
subject_GND (DE-588)4074715-3
(DE-588)4037951-6
(DE-588)4185717-3
(DE-588)4127974-8
(DE-588)4036202-4
(DE-588)4120552-2
(DE-588)4129930-9
title Topoi the categorial analysis of logic
title_auth Topoi the categorial analysis of logic
title_exact_search Topoi the categorial analysis of logic
title_full Topoi the categorial analysis of logic Robert Goldblatt
title_fullStr Topoi the categorial analysis of logic Robert Goldblatt
title_full_unstemmed Topoi the categorial analysis of logic Robert Goldblatt
title_short Topoi
title_sort topoi the categorial analysis of logic
title_sub the categorial analysis of logic
topic Topos (mathématiques) ram
Mengenlehre (DE-588)4074715-3 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Topos Mathematik (DE-588)4185717-3 gnd
Topos (DE-588)4127974-8 gnd
Logik (DE-588)4036202-4 gnd
Kategorientheorie (DE-588)4120552-2 gnd
Kategorie Mathematik (DE-588)4129930-9 gnd
topic_facet Topos (mathématiques)
Mengenlehre
Mathematische Logik
Topos Mathematik
Topos
Logik
Kategorientheorie
Kategorie Mathematik
url http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=gold010
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000092971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000893472
work_keys_str_mv AT goldblattrobert topoithecategorialanalysisoflogic