Finite rank torsion free Abelian groups and rings
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1982
|
Schriftenreihe: | Lecture notes in mathematics
931 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000062956 | ||
003 | DE-604 | ||
005 | 20150227 | ||
007 | t | ||
008 | 870612s1982 |||| 00||| eng d | ||
020 | |a 3540115579 |9 3-540-11557-9 | ||
020 | |a 0387115579 |9 0-387-11557-9 | ||
035 | |a (OCoLC)8552325 | ||
035 | |a (DE-599)BVBBV000062956 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-19 |a DE-706 |a DE-83 |a DE-11 |a DE-188 |a DE-29T | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.2 |2 19 | |
082 | 0 | |a 510 |2 19 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 135f |2 stub | ||
084 | |a MAT 205f |2 stub | ||
100 | 1 | |a Arnold, David M. |d 1938- |e Verfasser |0 (DE-588)1064689140 |4 aut | |
245 | 1 | 0 | |a Finite rank torsion free Abelian groups and rings |c David M. Arnold |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1982 | |
300 | |a VI, 191 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 931 | |
650 | 4 | |a Anneaux d'endomorphismes | |
650 | 4 | |a Anneaux quotients | |
650 | 4 | |a Groupes abéliens sans torsion | |
650 | 4 | |a Endomorphism rings | |
650 | 4 | |a Quotient rings | |
650 | 4 | |a Torsion free Abelian groups | |
650 | 0 | 7 | |a Abelsche Gruppe |0 (DE-588)4140988-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endlicher Rang |0 (DE-588)4487848-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsionsfreie Abelsche Gruppe |0 (DE-588)4311189-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsionsfreier Modul |0 (DE-588)4473140-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsionsfreie Gruppe |0 (DE-588)4311186-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutativer Ring |0 (DE-588)4164825-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endlicher Rang |0 (DE-588)4487848-5 |D s |
689 | 0 | 1 | |a Torsionsfreie Abelsche Gruppe |0 (DE-588)4311189-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Abelsche Gruppe |0 (DE-588)4140988-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kommutativer Ring |0 (DE-588)4164825-0 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Torsionsfreier Modul |0 (DE-588)4473140-1 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Torsionsfreie Gruppe |0 (DE-588)4311186-5 |D s |
689 | 4 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 931 |w (DE-604)BV000676446 |9 931 | |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-000025673 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102/MAT 001z 2001 B 999-931 |
---|---|
DE-BY-TUM_katkey | 51015 |
DE-BY-TUM_media_number | 040020166543 |
_version_ | 1816711255582310400 |
any_adam_object | |
author | Arnold, David M. 1938- |
author_GND | (DE-588)1064689140 |
author_facet | Arnold, David M. 1938- |
author_role | aut |
author_sort | Arnold, David M. 1938- |
author_variant | d m a dm dma |
building | Verbundindex |
bvnumber | BV000062956 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
classification_tum | MAT 135f MAT 205f |
ctrlnum | (OCoLC)8552325 (DE-599)BVBBV000062956 |
dewey-full | 512/.2 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.2 510 |
dewey-search | 512/.2 510 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02303nam a2200649 cb4500</leader><controlfield tag="001">BV000062956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150227 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1982 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540115579</subfield><subfield code="9">3-540-11557-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387115579</subfield><subfield code="9">0-387-11557-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)8552325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000062956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 135f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 205f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnold, David M.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1064689140</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite rank torsion free Abelian groups and rings</subfield><subfield code="c">David M. Arnold</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 191 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">931</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux d'endomorphismes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux quotients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes abéliens sans torsion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endomorphism rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quotient rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torsion free Abelian groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abelsche Gruppe</subfield><subfield code="0">(DE-588)4140988-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endlicher Rang</subfield><subfield code="0">(DE-588)4487848-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsionsfreie Abelsche Gruppe</subfield><subfield code="0">(DE-588)4311189-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsionsfreier Modul</subfield><subfield code="0">(DE-588)4473140-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsionsfreie Gruppe</subfield><subfield code="0">(DE-588)4311186-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endlicher Rang</subfield><subfield code="0">(DE-588)4487848-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Torsionsfreie Abelsche Gruppe</subfield><subfield code="0">(DE-588)4311189-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Abelsche Gruppe</subfield><subfield code="0">(DE-588)4140988-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Torsionsfreier Modul</subfield><subfield code="0">(DE-588)4473140-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Torsionsfreie Gruppe</subfield><subfield code="0">(DE-588)4311186-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">931</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">931</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000025673</subfield></datafield></record></collection> |
id | DE-604.BV000062956 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:07:22Z |
institution | BVB |
isbn | 3540115579 0387115579 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000025673 |
oclc_num | 8552325 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-19 DE-BY-UBM DE-706 DE-83 DE-11 DE-188 DE-29T |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-19 DE-BY-UBM DE-706 DE-83 DE-11 DE-188 DE-29T |
physical | VI, 191 S. |
psigel | TUB-nveb |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spellingShingle | Arnold, David M. 1938- Finite rank torsion free Abelian groups and rings Lecture notes in mathematics Anneaux d'endomorphismes Anneaux quotients Groupes abéliens sans torsion Endomorphism rings Quotient rings Torsion free Abelian groups Abelsche Gruppe (DE-588)4140988-7 gnd Endlicher Rang (DE-588)4487848-5 gnd Torsionsfreie Abelsche Gruppe (DE-588)4311189-0 gnd Torsionsfreier Modul (DE-588)4473140-1 gnd Torsionsfreie Gruppe (DE-588)4311186-5 gnd Kommutativer Ring (DE-588)4164825-0 gnd |
subject_GND | (DE-588)4140988-7 (DE-588)4487848-5 (DE-588)4311189-0 (DE-588)4473140-1 (DE-588)4311186-5 (DE-588)4164825-0 |
title | Finite rank torsion free Abelian groups and rings |
title_auth | Finite rank torsion free Abelian groups and rings |
title_exact_search | Finite rank torsion free Abelian groups and rings |
title_full | Finite rank torsion free Abelian groups and rings David M. Arnold |
title_fullStr | Finite rank torsion free Abelian groups and rings David M. Arnold |
title_full_unstemmed | Finite rank torsion free Abelian groups and rings David M. Arnold |
title_short | Finite rank torsion free Abelian groups and rings |
title_sort | finite rank torsion free abelian groups and rings |
topic | Anneaux d'endomorphismes Anneaux quotients Groupes abéliens sans torsion Endomorphism rings Quotient rings Torsion free Abelian groups Abelsche Gruppe (DE-588)4140988-7 gnd Endlicher Rang (DE-588)4487848-5 gnd Torsionsfreie Abelsche Gruppe (DE-588)4311189-0 gnd Torsionsfreier Modul (DE-588)4473140-1 gnd Torsionsfreie Gruppe (DE-588)4311186-5 gnd Kommutativer Ring (DE-588)4164825-0 gnd |
topic_facet | Anneaux d'endomorphismes Anneaux quotients Groupes abéliens sans torsion Endomorphism rings Quotient rings Torsion free Abelian groups Abelsche Gruppe Endlicher Rang Torsionsfreie Abelsche Gruppe Torsionsfreier Modul Torsionsfreie Gruppe Kommutativer Ring |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT arnolddavidm finiteranktorsionfreeabeliangroupsandrings |