Proper forcing

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shelah, Saharon 1945- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 1982
Schriftenreihe:Lecture notes in mathematics 940
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV000043967
003 DE-604
005 20080402
007 t|
008 870612s1982 xx |||| 00||| eng d
020 |a 3540115935  |9 3-540-11593-5 
020 |a 0387115935  |9 0-387-11593-5 
035 |a (OCoLC)8890854 
035 |a (DE-599)BVBBV000043967 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-91G  |a DE-384  |a DE-355  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-706  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA3 
082 0 |a 510  |2 19 
082 0 |a 511/.8  |2 19 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a 04-02  |2 msc 
084 |a 03E05  |2 msc 
084 |a 03E35  |2 msc 
100 1 |a Shelah, Saharon  |d 1945-  |e Verfasser  |0 (DE-588)120062755  |4 aut 
245 1 0 |a Proper forcing  |c Saharon Shelah 
264 1 |a Berlin [u.a.]  |b Springer  |c 1982 
300 |a XXIX, 496 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 940 
650 4 |a Forcing (Théorie des modèles) 
650 7 |a Forcing (modeltheorie)  |2 gtt 
650 7 |a Modeltheorie  |2 gtt 
650 7 |a Verzamelingen (wiskunde)  |2 gtt 
650 4 |a Axiomatic set theory 
650 4 |a Forcing (Model theory) 
650 0 7 |a Mengenlehre  |0 (DE-588)4074715-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Forcing  |0 (DE-588)4154978-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Kardinalzahl  |0 (DE-588)4163318-0  |2 gnd  |9 rswk-swf 
655 7 |a Cohensche Zahl  |2 gnd  |9 rswk-swf 
655 7 |a Cohensche Zahlen  |2 gnd  |9 rswk-swf 
689 0 0 |a Forcing  |0 (DE-588)4154978-8  |D s 
689 0 1 |a Kardinalzahl  |0 (DE-588)4163318-0  |D s 
689 0 2 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 0 3 |a Cohensche Zahlen  |A f 
689 0 |5 DE-604 
689 1 0 |a Kardinalzahl  |0 (DE-588)4163318-0  |D s 
689 1 1 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 1 2 |a Cohensche Zahlen  |A f 
689 1 3 |a Cohensche Zahl  |A f 
689 1 |5 DE-604 
689 2 0 |a Kardinalzahl  |0 (DE-588)4163318-0  |D s 
689 2 1 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 2 2 |a Cohensche Zahl  |A f 
689 2 3 |a Forcing  |0 (DE-588)4154978-8  |D s 
689 2 |5 DE-604 
830 0 |a Lecture notes in mathematics  |v 940  |w (DE-604)BV000676446  |9 940 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000012808&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-000012808 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 001z 2001 B 999
DE-BY-TUM_katkey 49771
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020166634
_version_ 1820806112060899328
adam_text ANNOTATED CONTENT I FORCING. BASIC FACTS §1. Introducing forcing 1 [We define generic sets, names for forcing a notion, and formulate Cohen s theorems] {2. The consistency of CH 9 [Our aim is to construct by forcing a model of ZFC were CH holds, first we explain the problem of not collapsing cardinals, and second prove that H, complete forcing notion does not add reals] 53. On the consistency H [We construct a model of ZFC in which the Continuum Hypothesis fails; define the c.c.c, prove that forcing with c.c.c. forcing preserves cardi¬ nalities and coflnalitiea, and prove also the A system lemma for finite sets] §4. More on the cardinality 2 ° and Cohen reals 21 [We construct for every cardinal X in V which satisfies X ° = X a model V[G] such that V[G] (= 2M° = X. Also define Cohen reals] SB. Equivalence of forcing notions, and canonical names 26 [Define when two forcing notions are equivalent. Introduce canonical names and prove that for every P name t there is a canonical f name a XIV such that p t = a ] §6. Random r^Mlfo «»oll»»p»niig nartHnalg miJ fWamnnrta 3 [Introduce random reals; Levy collapse. Prove that for regular X d (Ko, X) satisfies the X c.c. For every uncountable regular X and a stationary S C X define a forcing notion P which does not collapse S such that Vp |= Q 1 D ITERATION OF FORCING jl. The composition of two forcing notions 39 [Define composition of two notions and state the associativity lemma] J2. Iterated forcing 44 [Define it. and prove that the c.c.c is preserved by FS iteration] §3. Martin Axiom and few applications 48 [Prove that ZFC +2 $! + MA is consistent. Use MA to prove many Simple uniformization properties] 54. The uniformization properties 57 [Here we deal with more general uniformization properties, we weaken the demand of almost disjointness to a kind of tree] }5. Maximal almost disjoint families of subsets of u 68 [A maximal almost disjoint (mad) subset of P(o) is a family of infinite XV subsets of a such that the intersection of any two members is finite and maximal with this property. We prove using MA every mad set has cardi M M nality 2 °. The other direction: For every Hj is. X 2 ° there exists a generic extension of V by c.c.c. forcing such that in it there exist mad set of power X] in PROPER FORCING Jl. Introducing properness 73 [We define P is a proper forcing notion prove some definitions are equivalent (and deal with the closed unbounded filter O (X))] o J2. More on properness 82 [We define p is (N.P) generic and deal more with equivalent definitions of properness] {3. Preservation of properness under CS iteration 90 [We prove the theorem mentioned in the title] {4. Martin Axiom revisited 95 [We discuss the popularity of the c.c.c., whether we can replace it by a more natural and weaker condition. We give a sufficient condition for a CS iteration of length k to satisfy the k c.c. We prove the consistency (assuming existence of an inaccessible cardinal) of ZFC + 2 =M, + HA for forcing notions not destroying stationary subsets of Wi . We show that the last demand cannot be replaced by not collapsing XVI cardinalities or cofinalities ] 100 §5. Aronszajn trees [We define K Aronszajn, K Souslin. present existence theorems (for * when = X**) and prove that under MA every Aronszajn tree is special] §6. Maybe there is no «Z Aronazajn tree 104 u [We prove the consistency of ZFC + 2 ° = M2 + there is no Hg Aronszajn tree , the method collapsing successively all X,Hj X k (e a weakly compact cardinal) treating every potential initial segment of an Hz Aronszajn tree so that it cannot actually be so.] (7. Closed unbounded sets otol can run away from many sets 109 [We prove the consistency of ZFC + 2 ° = Hz with if for i »,, A* C «i has order type C Sup At, then for some closed unbounded C C «i , (V i)[Sup (C C A) Sup At] IV ON ORACLE C.C. AND /?(«) /FINITE HAS NO NON TRIVIAL AUTOMORPHISH §0. Introduction 114 [The oracle c.c. method enables us to start with V ^ Q. extend the set of reals o g times (by iterated forcing), in the intermediate stages Q^ holds, and we omit types of power M, along the way.] |1. On oracle chain condition 117 XVII [One way to build forcing notions satisfying the Mj c.c, is by successive countable approximations including promises to maintain the preden sity of countably many subset, many times using the diamond, we for¬ malize a corresponding property (S c.c. M an oracle) and prove the equivalence of some variants of the definition] {2. The omitting type theorem 122 [We prove that if the intersection of H, Borel sets is empty and even if we add a Cohen real it remains empty , (and O, ) then for some oracle S, for every P satisfying the U c.c. in Vp the intersection of the Borel Bets (reinterpreted) is still empty] 83 Iterations of jtf c.c 124 [We show that for Finite Support iteration Q =(Pt.Q :* asSt 2). if Hi e V**1 ig an»roracle large enough for ((1^/^.9/) ¦] *). and Qt satisfies the 54 c.c. then Pa = Lim Q satisfies the fio c.c. The first three sections give the exact formulation of the aim stated in the intro¬ duction and prove that it works] J4. Reduction of the Main Theorem to the Main Lemma 129 [We show how to apply the method described in {1 S3 in order to get a model in which the Boolean algebra P(o)/ nite has no non trivial auto¬ morphism, i.e., one induces by permutations of o] 85. Proof of the Main Lemma 4.6 134 [The point missing in {4 is: if F is an automorphism of //(u)/finite, M an XVIII H^oracle, then there is forcing notion P satisfying the M c.c, and a P name Y of a real such that in V**, for no I d, (V A,B e/9(u)K)[x n A = B = Y n ^U) = ^ (#)] (even a Cohen forcing does not introduce such a Y). We try to build such F.Kand prove that if we always fail F is trivial] V a PROFERNESS AND NOT ADDING REALS {1. Iterations of forcing notions which does not add real 153 [We define what it means to be ^ complete e.g., if P c (Bl 2, ), E Qot stationary and /„ C /B+i £ P, Sup (Dom /„) e E. We show that prop erness + .F completeness are preserved by CS iteration and get corresponding Axiom. Also introduce a form of MA which is consistent with CH and prove using it a uniformization property which imply existence of a non free Whitehead group] 52. (£ a,e) properness 162 [We introduce various variants of properness] (3. a properness and (E,a) properness revisited 164 [We repeat the previous section in more details] J4. Preservation of u properness + the ua bounding property 169 [P satisfies the u bounding property if [V/ e CI«)vP][3flr e ( ) ] ( A / (n) g (n)). We prove in great detail the theorem stated in the XIX title] {5. What forcing can we iterate without adding reals 177 [We explain why not adding reals is not preserved by any kind of itera¬ tion, and suggest a remedy completeness] §6. Specializing Aronszajn trees without adding reals 181 [We prove that every Aronszajn tree can be specialized by a nice forcing o proper for every a G t and complete for some Hj completeness sys¬ tem together with the next section this gives a proof Gan(ZFC + Zk[k inaccessble]) = Qm(ZFC + G.C.H. + SM) and with Chapter VHI a new proof of Jensen s Con(ZFC + G.C.H. + SH).] $7. Iteration of (£ l) complete forcing notions 189 [We prove the limit of a CS iteration of ft each is o proper for every a £ ,, and complete for some simpler completeness] VIP POINTS AND PRESERVATION THEOREM Jl. A general preservation theorem 195 [We present a way to prove preservation of («,l) properness + x for properties x restricting our set of reals. Our hope is that this frame¬ work is easy to be applied to many properties] {2. Three known properties 203 [We prove that the a bounding property, the Sacks property and the XX Laver property comes under the framework of §1; the Sacks and Laver property appear first and most characteristically in the forcing notions bearing the respective names] $3. PP ( P point) property 209 [We introduce a new property (PP) which conies under the framework of jl, and some variants of it] J4. There may be no P point 213 [We present another proof of this theorem, using the preservation of the /V property. This may serve as a preliminary test, whether our general machinery simplifies and clarifies proofs] 85. There may be a unique Ramsey ultrafllter 221 [The main result is the consistency of ZFC + 2 ° = M2 +¦ there is a unique Ramsey ultrafllter on a up to permutations of a . For this we have to prove that D generates a Ramsey ultrafilter is preserved by another application of Jl, and of course to work on each iterand] VH THE SEPTEMBER NOTES ON PROPER FORCING 51 On the Hg c.c 233 [When we iterate M2 times forcings not adding real, (but not necessarily M, complete) we suggest a condition called H2 e.c.c. so that if each ft satisfies the Mj e.c.c, then P^ satisfies the Hg cc] XXI §2. The axioms 236 [We suggest some axioms whose consistency follows from the theorem on preservation under iteration of various properties.] §3. Applications of Ax n 241 [We prove several applications of an axiom consistent with G.C.H.] §4. Applications of Ax I 253 [We prove some applications and mention others of an axiom consistent with 2*° = Mz.] 85. An Example 255 [An example is given of a countable support iteration of length a of forc¬ ing not collapsing stationary subsets of alt but the limit collapse M,] Vm THE OCTOBER NOTES ON PROPER FORCING 81. Mixed Iteration 258 [We prove that we can iterate Kg complete forcings and Mi complete forcings satisfying a strong M2 chain condition, without collapsing H, and «*] S3. Chains conditions revisited 262 ¦ [We suggest another condition, e pic, to ensure the limit of the itera¬ tion PK satisfies the jc c.c. The aim is e.g., we start with V |= 3*° = Hi a 2*1 Mg , and use CS iteration Q of length ug , each XXII time dealing with all problems (there are 2T1) at once] (3. The Axioms Revisited 266 [We discuss what axioms we can get according to the four possibilities of the truth of 2*°= H, . 2*l =HZ but assuming always 2M°*«2] (4. More on forcings not aHiting u sequences and on the diagonal arguments .... 269 a [We prove e.g., that CH does not imply ?. by dealing with 2 complete systems] KSOXJSLIN HYPOTHESIS DOES NOT IMPLY EVERY ARONSZAJN TREE IS SPECIAL jl. Free Unit 278 [We look at Boolean algebras generated by a set of sentences in inflnitary prepositional calculus (mainly LUl,u). This enables us to define free limit] §2. Preservation by free limit 281 [We prove that an iteration in which we use £ei,B free limit at limit stages, preserve properness] }3. Aronszajn trees: various ways to specialize 285 [We introduce some new ways to specialize Aronszajn trees, and present the old ones, as well as the connection between those properties] XXIII §4 Independence results 291 [Here are the main results. We use an iterated forcing Sst specializing any Aronszajn tree. The problem is to make sure that some fixed tree T will remain not special. They introduce such a property of forcing (7 *,S) preserving and show that is is preserved in iteration. There is a discussion of the problem and our strategy in the beginning of the sec¬ tion and discussion of open problems and how can the preservation theorem be generalized] X SEMI PROPER FORCINGS JO. Introduction 304 {1. Iterated forcing with RCS (rerised countable support) 304 [The standard countable support iteration cannot be spoiled when cofinalities are changed to a, we introduce the revised version suitable for this case.] 82. Proper forcing revisited 313 [We define semi properness, and prove that it is strongly preserved by RCS iteration.] B3. Pseudo completeness 320 [We prove that a weakening of Mi completeness is strongly preserved by RCS iteration.] XXIV J4. Specific forcings 326 [Ye deal with Prikry forcing. Namba forcing and generalizations which are semi proper when we use Galvin filter.] (S. Chain conditions and Avraham s problem 335 [We prove that under reasonable conditions the ic c.c. holds and get its first application: a universe V in which for every A Ca% there is a count¬ able subset of of which does not belong to L(A).] |B. Reflection properties of S§. Refining Abraham s problem and precipitous 338 ideals [For some large cardinal k, by iteration we find a forcing notion P, such that V* |= k = M, and A = 6 k : cf 6 = Mo , S regular in V) is station¬ ary . So we may make A large in some sense, as mentioned in the title.] (7. Strong preservation and propernesa 346 [We present some properties strongly preserved by RCS iteration; the most important is a strengthening of not adding reals. This continues VI II.] JB. Friedman s problem 347 [We collapse some large c, by iterated forcing, which sometimes col¬ lapses (2 *)* to H,, sometimes change the cofinality of M2 to Ho, and sometimes add a closed unbounded C C S of order type ax, where S c Sif is stationary. We get a model V in which every stationary S c S§ = 6 M2 : cf 6 =M0J contains a closed copy of Ui By stronger hypothesis we get it for every stationary S Q S£. cf H. Mo] XXV XI CHANGING COF1NA1JTIES: EQUI CONSISTENCY RESULTS Jl. The theorems 354 [Here we describe what kind of a condition on forcing notions we want. Then we proceed to get consistency results. The proof uses RCS iteration of length k, k a strongly inaccessible cardinal. In each step, we allow Namba forcing. The consistency results are mostly from X but here we use the minimal large cardinals required.] 52. The condition 359 [We describe here the conditions, and some helping definitions and con¬ ventions] 53. The preservation properties guaranteed by the S condition 362 [We prove that such a condition implies Hj is not collapsed, and (assum¬ ing CH) no real is added; and for it partitions theorems on trees] |4. Forcing notions satisfying the S condition 366 [We show that Namba forcing, Nm satisfies the (H2} condition that Nm and Nm are really different forcing notions that Nm, Nm may satisfy the H4 C.C. (while 2 ° = Kj , 2 is large) We also prove Bi complete forcing and a forcing notion shooting a closed unbounded subset of order type «i through a stationary S c S§ satisfies our condition] §5. Finite composition 372 [We prove that under suitable hypothesis, a composition of forcing satis¬ fying an S condition satisfies it. For this we prove a combinatorial XXVI theorem on trees] §6. Preservation of the I condition by iteration 375 [Here we prove that if we iterate forcing notions satisfying our condi¬ tions, but enough times collapse the present 2|p| to Hi, the composite forcing satisfies the condition. So usually we have large segments of car¬ dinals which we have to collapse by Mi complete forcings, but for strongly inaccessible we can use Nm straight away (by 6.5)] J7. Further independence results 388 [We prove the equlconsistency of ZFC + k Is Mahlo + H2 has the Fried¬ man property , and a further result using weakly compact cardinal. We also prove the equiconsistency of ZFC + ic is 2 Mahlo and ZFC+ there is the club of M2 consisting of regular cardinals of L] XD IMPROPER FORCING JO. Introduction 394 §1. When Namba forcing is semi proper, Chang s Conjecture and games 395 [We prove e.g., that if some {H^ semi proper forcing changes the cofinality of H2 to a then Namba forcing is semi proper, and Chang s Conjecture holds hence 0* e V.] J2. Games and properness 400 [Equivalent definitions of variants of properness by games are given, and XXVII it is exemplified how the proofs of the preservation theorems in this context look like] §3. Amalgamating propemegs with the 5 condition 406 [We show how we can extend the results of the previous Chapter to more forcing notions] Xm THE STRONG COVERING LEMMA ND THE G.CJ1. JO. Introduction 410 [Explanation of the history of the singular cardinals problem, and the significance of the strong covering lemma and its relation to proper forcing] $1. The strong covering lemma: Definitions and implications 416 [Here we introduce the notions connected with the strong covering lemma and notice some trivial connections. Note that if (ff,V) satisfies the hypothesis of the strong covering lemma, then so does ( *, V) when¬ ever ircifcf] J2. Proof of the strong covering lemma 420 [Here we prove the statement on games phrased above (and obviously implying the strong covering lemma) by induction on a. We prove e.g., that if 0* ttL, then (L.V) satisfies the M3 covering lemma. This part is somewhat harder than the rest of the paper.] XXVIII 53. A counterexample 435 [We prove that we may extend L to V (by forcing) collapsing Mg only, cl K(Mg) =Ki, so that the Kj covering lemma holds but the strong Hi covering lemma fall.] §4. When adding a real cannot destroy CH 437 [We deal with variants of can adding a real violate CH while preserving cardinals , and prove that each implies an inner model with suitable large cardinals. For getting sharper result we have to improve the results of §2 getting e.g., that if A c az , A e V . H£W = M/ and 0* £ V then (L[A].V) satisfies the strong X covering lemma for every X.] 85. Bound on 2* for Ma singular 444 [We give bound to (Ha)ct* in the way we deal with scales and cofinalities of ultraproducts. This section can be read alone]. 56. Concluding remarks and questions 453 [This section continues {0. We make some remarks giving some claims we can prove but their value is not clear, and discussing the open ques¬ tions, and explain how to get simpler proofs for weaker theorems.] XIV ON WEAK DIAMONDS AND THE P0WEK OF EXT 50. Introduction 461 Jl. Unif strong negation of the weak diamonds fR 463 XXIX [Introduce a generalization, of the negation of the weak diamond (i.e., e MM #u ) and prove it from an appropriate replacement of 2 ° 2 ]. §2. On the power of Ext and Whitehead problem 474 §3 Weak diamond for M2 assuming CH 485 [We prove that every ladder system 5 = (i)j:Je5f) when ij« is con¬ tinuous cannot be uniformized assuming 2T0 =Mi], REFERENCES 492
any_adam_object 1
author Shelah, Saharon 1945-
author_GND (DE-588)120062755
author_facet Shelah, Saharon 1945-
author_role aut
author_sort Shelah, Saharon 1945-
author_variant s s ss
building Verbundindex
bvnumber BV000043967
callnumber-first Q - Science
callnumber-label QA3
callnumber-raw QA3
callnumber-search QA3
callnumber-sort QA 13
callnumber-subject QA - Mathematics
classification_rvk SI 850
ctrlnum (OCoLC)8890854
(DE-599)BVBBV000043967
dewey-full 510
511/.8
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
511 - General principles of mathematics
dewey-raw 510
511/.8
dewey-search 510
511/.8
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02519nam a2200697 cb4500</leader><controlfield tag="001">BV000043967</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080402 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">870612s1982 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540115935</subfield><subfield code="9">3-540-11593-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387115935</subfield><subfield code="9">0-387-11593-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)8890854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000043967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.8</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">04-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03E05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03E35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shelah, Saharon</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120062755</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proper forcing</subfield><subfield code="c">Saharon Shelah</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 496 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">940</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Théorie des modèles)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forcing (modeltheorie)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modeltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Verzamelingen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiomatic set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Model theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Cohensche Zahl</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Cohensche Zahlen</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Cohensche Zahlen</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Cohensche Zahlen</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Cohensche Zahl</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Cohensche Zahl</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">940</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">940</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=000012808&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000012808</subfield></datafield></record></collection>
genre Cohensche Zahl gnd
Cohensche Zahlen gnd
genre_facet Cohensche Zahl
Cohensche Zahlen
id DE-604.BV000043967
illustrated Not Illustrated
indexdate 2024-12-23T09:51:35Z
institution BVB
isbn 3540115935
0387115935
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-000012808
oclc_num 8890854
open_access_boolean
owner DE-12
DE-91G
DE-BY-TUM
DE-384
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-83
DE-11
DE-188
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-384
DE-355
DE-BY-UBR
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-706
DE-83
DE-11
DE-188
physical XXIX, 496 S.
publishDate 1982
publishDateSearch 1982
publishDateSort 1982
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Shelah, Saharon 1945-
Proper forcing
Lecture notes in mathematics
Forcing (Théorie des modèles)
Forcing (modeltheorie) gtt
Modeltheorie gtt
Verzamelingen (wiskunde) gtt
Axiomatic set theory
Forcing (Model theory)
Mengenlehre (DE-588)4074715-3 gnd
Forcing (DE-588)4154978-8 gnd
Kardinalzahl (DE-588)4163318-0 gnd
subject_GND (DE-588)4074715-3
(DE-588)4154978-8
(DE-588)4163318-0
title Proper forcing
title_auth Proper forcing
title_exact_search Proper forcing
title_full Proper forcing Saharon Shelah
title_fullStr Proper forcing Saharon Shelah
title_full_unstemmed Proper forcing Saharon Shelah
title_short Proper forcing
title_sort proper forcing
topic Forcing (Théorie des modèles)
Forcing (modeltheorie) gtt
Modeltheorie gtt
Verzamelingen (wiskunde) gtt
Axiomatic set theory
Forcing (Model theory)
Mengenlehre (DE-588)4074715-3 gnd
Forcing (DE-588)4154978-8 gnd
Kardinalzahl (DE-588)4163318-0 gnd
topic_facet Forcing (Théorie des modèles)
Forcing (modeltheorie)
Modeltheorie
Verzamelingen (wiskunde)
Axiomatic set theory
Forcing (Model theory)
Mengenlehre
Forcing
Kardinalzahl
Cohensche Zahl
Cohensche Zahlen
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000012808&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT shelahsaharon properforcing