Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources

The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical and computational acoustics 2022-12, Vol.30 (4)
Hauptverfasser: Jin, Boao, Gao, Yan, Jin, Zhongkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of theoretical and computational acoustics
container_volume 30
creator Jin, Boao
Gao, Yan
Jin, Zhongkun
description The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the γ + + leaf, while the asymptotic expressions related to compressional waves should use the results of the γ + − leaf when > arcsin h / k . Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.
doi_str_mv 10.1142/S2591728521500225
format Article
fullrecord <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S2591728521500225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761465281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-599fc3aac84ae127e700eeef4e27ac447a54175776b22dabd7a52f1d16977ddf3</originalsourceid><addsrcrecordid>eNplUFFLwzAQLqLgmPsBvgV8ruaypmkfx9ycMBDs9LVk6cVldM1MUmT-ejOnvsgd3HH3fd8dX5JcA70FyNhdxXgJghWcAaeUMX6WDI6jVBQA57993F8mI--3NGJiAC0GiZtpjSp4YjUJGyTP8tCieduQClXfSkfmfaeCsR2JuTI7TBfS7WxnFJn4w24fbIhtZdv-CPLkvkcSLFlYZz5tF2RLXs3ayW-FyvZOob9KLrRsPY5-6jB5mc9W00W6fHp4nE6WqRpzwVNellqNpVRFJhGYQEEpIuoMmZAqy4TkGQguRL5mrJHrJg6YhgbyUoim0eNhcnPS3Tv73qMP9TY-0MWTNRM5ZDlnBUQUnFDKWe8d6nrvzE66Qw20Prpb_3M3cuiJ82Fd23hlsAtGG_VH_U_5Al2KfQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761465281</pqid></control><display><type>article</type><title>Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources</title><source>World Scientific Open</source><creator>Jin, Boao ; Gao, Yan ; Jin, Zhongkun</creator><creatorcontrib>Jin, Boao ; Gao, Yan ; Jin, Zhongkun</creatorcontrib><description>The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the γ + + leaf, while the asymptotic expressions related to compressional waves should use the results of the γ + − leaf when &gt; arcsin h / k . Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.</description><identifier>ISSN: 2591-7285</identifier><identifier>EISSN: 2591-7811</identifier><identifier>DOI: 10.1142/S2591728521500225</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Asymptotic methods ; Exact solutions ; Integral transforms ; Object recognition ; Poles ; Riemann surfaces ; Steepest descent method ; Vibration</subject><ispartof>Journal of theoretical and computational acoustics, 2022-12, Vol.30 (4)</ispartof><rights>2022, The Author(s)</rights><rights>2022. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-599fc3aac84ae127e700eeef4e27ac447a54175776b22dabd7a52f1d16977ddf3</citedby><cites>FETCH-LOGICAL-c3575-599fc3aac84ae127e700eeef4e27ac447a54175776b22dabd7a52f1d16977ddf3</cites><orcidid>0000-0002-6236-5182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S2591728521500225$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27497,27924,27925,55569</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S2591728521500225$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jin, Boao</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Jin, Zhongkun</creatorcontrib><title>Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources</title><title>Journal of theoretical and computational acoustics</title><description>The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the γ + + leaf, while the asymptotic expressions related to compressional waves should use the results of the γ + − leaf when &gt; arcsin h / k . Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.</description><subject>Asymptotic methods</subject><subject>Exact solutions</subject><subject>Integral transforms</subject><subject>Object recognition</subject><subject>Poles</subject><subject>Riemann surfaces</subject><subject>Steepest descent method</subject><subject>Vibration</subject><issn>2591-7285</issn><issn>2591-7811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplUFFLwzAQLqLgmPsBvgV8ruaypmkfx9ycMBDs9LVk6cVldM1MUmT-ejOnvsgd3HH3fd8dX5JcA70FyNhdxXgJghWcAaeUMX6WDI6jVBQA57993F8mI--3NGJiAC0GiZtpjSp4YjUJGyTP8tCieduQClXfSkfmfaeCsR2JuTI7TBfS7WxnFJn4w24fbIhtZdv-CPLkvkcSLFlYZz5tF2RLXs3ayW-FyvZOob9KLrRsPY5-6jB5mc9W00W6fHp4nE6WqRpzwVNellqNpVRFJhGYQEEpIuoMmZAqy4TkGQguRL5mrJHrJg6YhgbyUoim0eNhcnPS3Tv73qMP9TY-0MWTNRM5ZDlnBUQUnFDKWe8d6nrvzE66Qw20Prpb_3M3cuiJ82Fd23hlsAtGG_VH_U_5Al2KfQ8</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Jin, Boao</creator><creator>Gao, Yan</creator><creator>Jin, Zhongkun</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6236-5182</orcidid></search><sort><creationdate>202212</creationdate><title>Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources</title><author>Jin, Boao ; Gao, Yan ; Jin, Zhongkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-599fc3aac84ae127e700eeef4e27ac447a54175776b22dabd7a52f1d16977ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Exact solutions</topic><topic>Integral transforms</topic><topic>Object recognition</topic><topic>Poles</topic><topic>Riemann surfaces</topic><topic>Steepest descent method</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Boao</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Jin, Zhongkun</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of theoretical and computational acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Boao</au><au>Gao, Yan</au><au>Jin, Zhongkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources</atitle><jtitle>Journal of theoretical and computational acoustics</jtitle><date>2022-12</date><risdate>2022</risdate><volume>30</volume><issue>4</issue><issn>2591-7285</issn><eissn>2591-7811</eissn><abstract>The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the γ + + leaf, while the asymptotic expressions related to compressional waves should use the results of the γ + − leaf when &gt; arcsin h / k . Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S2591728521500225</doi><orcidid>https://orcid.org/0000-0002-6236-5182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2591-7285
ispartof Journal of theoretical and computational acoustics, 2022-12, Vol.30 (4)
issn 2591-7285
2591-7811
language eng
recordid cdi_worldscientific_primary_S2591728521500225
source World Scientific Open
subjects Asymptotic methods
Exact solutions
Integral transforms
Object recognition
Poles
Riemann surfaces
Steepest descent method
Vibration
title Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20Rayleigh%20Secular%20Function%20on%20Time-Harmonic%20Asymptotic%20Solutions%20Due%20to%20Horizontal%20Vibration%20Sources&rft.jtitle=Journal%20of%20theoretical%20and%20computational%20acoustics&rft.au=Jin,%20Boao&rft.date=2022-12&rft.volume=30&rft.issue=4&rft.issn=2591-7285&rft.eissn=2591-7811&rft_id=info:doi/10.1142/S2591728521500225&rft_dat=%3Cproquest_ADCHV%3E2761465281%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761465281&rft_id=info:pmid/&rfr_iscdi=true