Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations

Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of air-conditioning and refrigeration 2018, 26(1), , pp.1-10
Hauptverfasser: Mohd-Yunos, Yushazaziah, Mohd-Ghazali, Normah, Mohamad, Maziah, Pamitran, Agus Sunjarianto, Oh, Jong-Taek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1850001
container_title International journal of air-conditioning and refrigeration
container_volume 26
creator Mohd-Yunos, Yushazaziah
Mohd-Ghazali, Normah
Mohamad, Maziah
Pamitran, Agus Sunjarianto
Oh, Jong-Taek
description Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers claimed theirs as a generalized heat transfer correlation. Through optimization method, this study predicts the heat transfer coefficient of two-phase flow of propane in a small channel at the saturation temperature of 10 ∘ C using two categories of correlation — superposition and asymptotic. Both methods consist of the contribution of nucleate boiling and forced convective heat transfer, the mechanisms that contribute to the total two-phase heat transfer coefficient, which become as two objective functions to be maximized. The optimization of experimental parameters of heat flux, mass flux, channel diameter and vapor quality is done by using genetic algorithm within a range of 5–20 kW/m2, 100–250 kg/m2 s, 1.5–3 mm and 0.009–0.99, respectively. In the result, the selected correlations under optimized condition agreed on the dominant mechanism at low and high vapor qualities are caused by the nucleate boiling and forced convective heat transfer, respectively. The optimization work served as an alternative approach in identifying optimized parameters from different correlations to achieve high heat transfer coefficient by giving a fast prediction of parameter range, particularly for the investigation of any new refrigerant. In parallel with some experimental works, a quick prediction is possible to reduce time and cost. From the four selected generalized correlations, Bertsch et al. show the closer trend with the reference experimental work until vapor quality of 0.6.
doi_str_mv 10.1142/S2010132518500013
format Article
fullrecord <record><control><sourceid>proquest_world</sourceid><recordid>TN_cdi_worldscientific_primary_S2010132518500013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150551461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3003-386a3c93d5dd3c48b81f56562b0078e00fc336ceb84c136040efe7b1a71eb8203</originalsourceid><addsrcrecordid>eNplkUFPAjEQhTdGEwnyA7w18eQBndluy-6REBUSEo3guel2W6ks7dIuIfx7FzBeOM3LzPteJjNJco_whJilz4sUEJCmDHMG0KmrpHdsDZFSev2vU3abDGK0JbCsoMjzUS_ZfgRdWdVa74g3pF1pMtWyJcsgXTQ6kInXxlhltWuJdUSSxUbWNZmspHO6Jnvbrk7UYtfo0PhoT1HSVWQcD5um9a1VXUgIupbHUbxLboysox781X7y9fqynEyH8_e32WQ8HyoKQIc055KqglasqqjK8jJHwzjjaQkwyjWAUZRypcs8U0g5ZKCNHpUoR9j1UqD95PGc64IRa2WFl_ZUv71YBzH-XM5EWnDOi7zzPpy9TfDbnY6t-PG74Lr1RIoMGMOMY-fCs0sFH2PQRjTBbmQ4CARxfIS4eETHwJnZ-1BX8XRH293zH71EfgHrOoll</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150551461</pqid></control><display><type>article</type><title>Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mohd-Yunos, Yushazaziah ; Mohd-Ghazali, Normah ; Mohamad, Maziah ; Pamitran, Agus Sunjarianto ; Oh, Jong-Taek</creator><creatorcontrib>Mohd-Yunos, Yushazaziah ; Mohd-Ghazali, Normah ; Mohamad, Maziah ; Pamitran, Agus Sunjarianto ; Oh, Jong-Taek</creatorcontrib><description>Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers claimed theirs as a generalized heat transfer correlation. Through optimization method, this study predicts the heat transfer coefficient of two-phase flow of propane in a small channel at the saturation temperature of 10 ∘ C using two categories of correlation — superposition and asymptotic. Both methods consist of the contribution of nucleate boiling and forced convective heat transfer, the mechanisms that contribute to the total two-phase heat transfer coefficient, which become as two objective functions to be maximized. The optimization of experimental parameters of heat flux, mass flux, channel diameter and vapor quality is done by using genetic algorithm within a range of 5–20 kW/m2, 100–250 kg/m2 s, 1.5–3 mm and 0.009–0.99, respectively. In the result, the selected correlations under optimized condition agreed on the dominant mechanism at low and high vapor qualities are caused by the nucleate boiling and forced convective heat transfer, respectively. The optimization work served as an alternative approach in identifying optimized parameters from different correlations to achieve high heat transfer coefficient by giving a fast prediction of parameter range, particularly for the investigation of any new refrigerant. In parallel with some experimental works, a quick prediction is possible to reduce time and cost. From the four selected generalized correlations, Bertsch et al. show the closer trend with the reference experimental work until vapor quality of 0.6.</description><identifier>ISSN: 2010-1325</identifier><identifier>EISSN: 2010-1333</identifier><identifier>DOI: 10.1142/S2010132518500013</identifier><language>eng</language><publisher>Busan: World Scientific Publishing Company</publisher><subject>Asymptotic methods ; Asymptotic properties ; Convective heat transfer ; Genetic algorithms ; Heat exchangers ; Heat flux ; Heat transfer coefficients ; Nucleate boiling ; Optimization ; Parameter identification ; Two phase flow ; Vapors ; 기계공학</subject><ispartof>International Journal of Air-Conditioning and Refrigeration, 2018, 26(1), , pp.1-10</ispartof><rights>2018, World Scientific Publishing Company</rights><rights>2018. World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3003-386a3c93d5dd3c48b81f56562b0078e00fc336ceb84c136040efe7b1a71eb8203</cites><orcidid>0000-0002-3054-9040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002325989$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohd-Yunos, Yushazaziah</creatorcontrib><creatorcontrib>Mohd-Ghazali, Normah</creatorcontrib><creatorcontrib>Mohamad, Maziah</creatorcontrib><creatorcontrib>Pamitran, Agus Sunjarianto</creatorcontrib><creatorcontrib>Oh, Jong-Taek</creatorcontrib><title>Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations</title><title>International journal of air-conditioning and refrigeration</title><description>Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers claimed theirs as a generalized heat transfer correlation. Through optimization method, this study predicts the heat transfer coefficient of two-phase flow of propane in a small channel at the saturation temperature of 10 ∘ C using two categories of correlation — superposition and asymptotic. Both methods consist of the contribution of nucleate boiling and forced convective heat transfer, the mechanisms that contribute to the total two-phase heat transfer coefficient, which become as two objective functions to be maximized. The optimization of experimental parameters of heat flux, mass flux, channel diameter and vapor quality is done by using genetic algorithm within a range of 5–20 kW/m2, 100–250 kg/m2 s, 1.5–3 mm and 0.009–0.99, respectively. In the result, the selected correlations under optimized condition agreed on the dominant mechanism at low and high vapor qualities are caused by the nucleate boiling and forced convective heat transfer, respectively. The optimization work served as an alternative approach in identifying optimized parameters from different correlations to achieve high heat transfer coefficient by giving a fast prediction of parameter range, particularly for the investigation of any new refrigerant. In parallel with some experimental works, a quick prediction is possible to reduce time and cost. From the four selected generalized correlations, Bertsch et al. show the closer trend with the reference experimental work until vapor quality of 0.6.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convective heat transfer</subject><subject>Genetic algorithms</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Heat transfer coefficients</subject><subject>Nucleate boiling</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Two phase flow</subject><subject>Vapors</subject><subject>기계공학</subject><issn>2010-1325</issn><issn>2010-1333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkUFPAjEQhTdGEwnyA7w18eQBndluy-6REBUSEo3guel2W6ks7dIuIfx7FzBeOM3LzPteJjNJco_whJilz4sUEJCmDHMG0KmrpHdsDZFSev2vU3abDGK0JbCsoMjzUS_ZfgRdWdVa74g3pF1pMtWyJcsgXTQ6kInXxlhltWuJdUSSxUbWNZmspHO6Jnvbrk7UYtfo0PhoT1HSVWQcD5um9a1VXUgIupbHUbxLboysox781X7y9fqynEyH8_e32WQ8HyoKQIc055KqglasqqjK8jJHwzjjaQkwyjWAUZRypcs8U0g5ZKCNHpUoR9j1UqD95PGc64IRa2WFl_ZUv71YBzH-XM5EWnDOi7zzPpy9TfDbnY6t-PG74Lr1RIoMGMOMY-fCs0sFH2PQRjTBbmQ4CARxfIS4eETHwJnZ-1BX8XRH293zH71EfgHrOoll</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Mohd-Yunos, Yushazaziah</creator><creator>Mohd-Ghazali, Normah</creator><creator>Mohamad, Maziah</creator><creator>Pamitran, Agus Sunjarianto</creator><creator>Oh, Jong-Taek</creator><general>World Scientific Publishing Company</general><general>Springer Nature B.V</general><general>대한설비공학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3054-9040</orcidid></search><sort><creationdate>201803</creationdate><title>Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations</title><author>Mohd-Yunos, Yushazaziah ; Mohd-Ghazali, Normah ; Mohamad, Maziah ; Pamitran, Agus Sunjarianto ; Oh, Jong-Taek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3003-386a3c93d5dd3c48b81f56562b0078e00fc336ceb84c136040efe7b1a71eb8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convective heat transfer</topic><topic>Genetic algorithms</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Heat transfer coefficients</topic><topic>Nucleate boiling</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Two phase flow</topic><topic>Vapors</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohd-Yunos, Yushazaziah</creatorcontrib><creatorcontrib>Mohd-Ghazali, Normah</creatorcontrib><creatorcontrib>Mohamad, Maziah</creatorcontrib><creatorcontrib>Pamitran, Agus Sunjarianto</creatorcontrib><creatorcontrib>Oh, Jong-Taek</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><collection>Korean Citation Index</collection><jtitle>International journal of air-conditioning and refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohd-Yunos, Yushazaziah</au><au>Mohd-Ghazali, Normah</au><au>Mohamad, Maziah</au><au>Pamitran, Agus Sunjarianto</au><au>Oh, Jong-Taek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations</atitle><jtitle>International journal of air-conditioning and refrigeration</jtitle><date>2018-03</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>1850001</spage><epage>10</epage><pages>1850001-10</pages><issn>2010-1325</issn><eissn>2010-1333</eissn><abstract>Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers claimed theirs as a generalized heat transfer correlation. Through optimization method, this study predicts the heat transfer coefficient of two-phase flow of propane in a small channel at the saturation temperature of 10 ∘ C using two categories of correlation — superposition and asymptotic. Both methods consist of the contribution of nucleate boiling and forced convective heat transfer, the mechanisms that contribute to the total two-phase heat transfer coefficient, which become as two objective functions to be maximized. The optimization of experimental parameters of heat flux, mass flux, channel diameter and vapor quality is done by using genetic algorithm within a range of 5–20 kW/m2, 100–250 kg/m2 s, 1.5–3 mm and 0.009–0.99, respectively. In the result, the selected correlations under optimized condition agreed on the dominant mechanism at low and high vapor qualities are caused by the nucleate boiling and forced convective heat transfer, respectively. The optimization work served as an alternative approach in identifying optimized parameters from different correlations to achieve high heat transfer coefficient by giving a fast prediction of parameter range, particularly for the investigation of any new refrigerant. In parallel with some experimental works, a quick prediction is possible to reduce time and cost. From the four selected generalized correlations, Bertsch et al. show the closer trend with the reference experimental work until vapor quality of 0.6.</abstract><cop>Busan</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S2010132518500013</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3054-9040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2010-1325
ispartof International Journal of Air-Conditioning and Refrigeration, 2018, 26(1), , pp.1-10
issn 2010-1325
2010-1333
language eng
recordid cdi_worldscientific_primary_S2010132518500013
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Asymptotic methods
Asymptotic properties
Convective heat transfer
Genetic algorithms
Heat exchangers
Heat flux
Heat transfer coefficients
Nucleate boiling
Optimization
Parameter identification
Two phase flow
Vapors
기계공학
title Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Heat%20Transfer%20Coefficient%20in%20a%20Small%20Channel%20with%20the%20Superposition%20and%20Asymptotic%20Correlations&rft.jtitle=International%20journal%20of%20air-conditioning%20and%20refrigeration&rft.au=Mohd-Yunos,%20Yushazaziah&rft.date=2018-03&rft.volume=26&rft.issue=1&rft.spage=1850001&rft.epage=10&rft.pages=1850001-10&rft.issn=2010-1325&rft.eissn=2010-1333&rft_id=info:doi/10.1142/S2010132518500013&rft_dat=%3Cproquest_world%3E2150551461%3C/proquest_world%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150551461&rft_id=info:pmid/&rfr_iscdi=true