TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION

In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered sto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical and applied finance 2021-02, Vol.24 (1), p.2150003
Hauptverfasser: BIELECKI, TOMASZ R., CHEN, TAO, CIALENCO, IGOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2150003
container_title International journal of theoretical and applied finance
container_volume 24
creator BIELECKI, TOMASZ R.
CHEN, TAO
CIALENCO, IGOR
description In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.
doi_str_mv 10.1142/S0219024921500035
format Article
fullrecord <record><control><sourceid>gale_world</sourceid><recordid>TN_cdi_worldscientific_primary_S0219024921500035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657573549</galeid><sourcerecordid>A657573549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</originalsourceid><addsrcrecordid>eNplkUtv1DAUhS0EEqPSH8DOEhK7wLXjV5YhdRmLJB4lbhGrKA9PFTRM2nhGwIbfTqJBbLq6V_d859zFQegtgQ-EMPqxBkoSoCyhhANAzF-gDZFJHImY0pdos8rRqr9G1yGMHZBExJyKeIP-OFPoyJSZLWtTO106XKTVF3tv0hIvR1fZHO8q-ynXRY3vyhtd4cLe6HzZM1251JTuG_5q3Banu11ustQZW2JnsdtqXOi0jO7TagnLNN7Zyt3a3Fhc61xnK_gGvdq3h-Cv_80rdHerXbaNcvt5ycqjPmacR4MA0bFBCaVYK2kv1cAk8Z56BVIMIPfQDtD7oQNGuFTKEzmoLmFABFcdia_Qu0vu4zw9nX04Nd-n83xcXjaUQ8IkKEgW6v2FemgPvhmP_XQ8-V-nh_YcQtOkgksuY85WkFzAfp5CmP2-eZzHH-38uyHQrJU0zypZPHDx_JzmwxD60R9P437s_1ufW_4C3UGBgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509470809</pqid></control><display><type>article</type><title>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</title><source>World Scientific Journals (Tsinghua Mirror)</source><source>World Scientific Journals</source><creator>BIELECKI, TOMASZ R. ; CHEN, TAO ; CIALENCO, IGOR</creator><creatorcontrib>BIELECKI, TOMASZ R. ; CHEN, TAO ; CIALENCO, IGOR</creatorcontrib><description>In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.</description><identifier>ISSN: 0219-0249</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S0219024921500035</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Discrete time ; Machine learning ; Markov analysis ; Portfolio management ; Stochastic control theory ; Uncertainty</subject><ispartof>International journal of theoretical and applied finance, 2021-02, Vol.24 (1), p.2150003</ispartof><rights>2021, World Scientific Publishing Company</rights><rights>COPYRIGHT 2021 World Scientific Publishing Co. Pte Ltd.</rights><rights>2021. World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</citedby><cites>FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</cites><orcidid>0000-0002-9608-7475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0219024921500035$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,776,780,3200,3207,4859,4860,27901,27902,55550,55562</link.rule.ids></links><search><creatorcontrib>BIELECKI, TOMASZ R.</creatorcontrib><creatorcontrib>CHEN, TAO</creatorcontrib><creatorcontrib>CIALENCO, IGOR</creatorcontrib><title>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</title><title>International journal of theoretical and applied finance</title><description>In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.</description><subject>Algorithms</subject><subject>Discrete time</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Portfolio management</subject><subject>Stochastic control theory</subject><subject>Uncertainty</subject><issn>0219-0249</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkUtv1DAUhS0EEqPSH8DOEhK7wLXjV5YhdRmLJB4lbhGrKA9PFTRM2nhGwIbfTqJBbLq6V_d859zFQegtgQ-EMPqxBkoSoCyhhANAzF-gDZFJHImY0pdos8rRqr9G1yGMHZBExJyKeIP-OFPoyJSZLWtTO106XKTVF3tv0hIvR1fZHO8q-ynXRY3vyhtd4cLe6HzZM1251JTuG_5q3Banu11ustQZW2JnsdtqXOi0jO7TagnLNN7Zyt3a3Fhc61xnK_gGvdq3h-Cv_80rdHerXbaNcvt5ycqjPmacR4MA0bFBCaVYK2kv1cAk8Z56BVIMIPfQDtD7oQNGuFTKEzmoLmFABFcdia_Qu0vu4zw9nX04Nd-n83xcXjaUQ8IkKEgW6v2FemgPvhmP_XQ8-V-nh_YcQtOkgksuY85WkFzAfp5CmP2-eZzHH-38uyHQrJU0zypZPHDx_JzmwxD60R9P437s_1ufW_4C3UGBgQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>BIELECKI, TOMASZ R.</creator><creator>CHEN, TAO</creator><creator>CIALENCO, IGOR</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte Ltd</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-9608-7475</orcidid></search><sort><creationdate>202102</creationdate><title>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</title><author>BIELECKI, TOMASZ R. ; CHEN, TAO ; CIALENCO, IGOR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Discrete time</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Portfolio management</topic><topic>Stochastic control theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BIELECKI, TOMASZ R.</creatorcontrib><creatorcontrib>CHEN, TAO</creatorcontrib><creatorcontrib>CIALENCO, IGOR</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International journal of theoretical and applied finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BIELECKI, TOMASZ R.</au><au>CHEN, TAO</au><au>CIALENCO, IGOR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</atitle><jtitle>International journal of theoretical and applied finance</jtitle><date>2021-02</date><risdate>2021</risdate><volume>24</volume><issue>1</issue><spage>2150003</spage><pages>2150003-</pages><issn>0219-0249</issn><eissn>1793-6322</eissn><abstract>In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0219024921500035</doi><orcidid>https://orcid.org/0000-0002-9608-7475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0219-0249
ispartof International journal of theoretical and applied finance, 2021-02, Vol.24 (1), p.2150003
issn 0219-0249
1793-6322
language eng
recordid cdi_worldscientific_primary_S0219024921500035
source World Scientific Journals (Tsinghua Mirror); World Scientific Journals
subjects Algorithms
Discrete time
Machine learning
Markov analysis
Portfolio management
Stochastic control theory
Uncertainty
title TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TIME-INCONSISTENT%20MARKOVIAN%20CONTROL%20PROBLEMS%20UNDER%20MODEL%20UNCERTAINTY%20WITH%20APPLICATION%20TO%20THE%20MEAN-VARIANCE%20PORTFOLIO%20SELECTION&rft.jtitle=International%20journal%20of%20theoretical%20and%20applied%20finance&rft.au=BIELECKI,%20TOMASZ%20R.&rft.date=2021-02&rft.volume=24&rft.issue=1&rft.spage=2150003&rft.pages=2150003-&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S0219024921500035&rft_dat=%3Cgale_world%3EA657573549%3C/gale_world%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509470809&rft_id=info:pmid/&rft_galeid=A657573549&rfr_iscdi=true