TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION
In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered sto...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical and applied finance 2021-02, Vol.24 (1), p.2150003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2150003 |
container_title | International journal of theoretical and applied finance |
container_volume | 24 |
creator | BIELECKI, TOMASZ R. CHEN, TAO CIALENCO, IGOR |
description | In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty. |
doi_str_mv | 10.1142/S0219024921500035 |
format | Article |
fullrecord | <record><control><sourceid>gale_world</sourceid><recordid>TN_cdi_worldscientific_primary_S0219024921500035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657573549</galeid><sourcerecordid>A657573549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</originalsourceid><addsrcrecordid>eNplkUtv1DAUhS0EEqPSH8DOEhK7wLXjV5YhdRmLJB4lbhGrKA9PFTRM2nhGwIbfTqJBbLq6V_d859zFQegtgQ-EMPqxBkoSoCyhhANAzF-gDZFJHImY0pdos8rRqr9G1yGMHZBExJyKeIP-OFPoyJSZLWtTO106XKTVF3tv0hIvR1fZHO8q-ynXRY3vyhtd4cLe6HzZM1251JTuG_5q3Banu11ustQZW2JnsdtqXOi0jO7TagnLNN7Zyt3a3Fhc61xnK_gGvdq3h-Cv_80rdHerXbaNcvt5ycqjPmacR4MA0bFBCaVYK2kv1cAk8Z56BVIMIPfQDtD7oQNGuFTKEzmoLmFABFcdia_Qu0vu4zw9nX04Nd-n83xcXjaUQ8IkKEgW6v2FemgPvhmP_XQ8-V-nh_YcQtOkgksuY85WkFzAfp5CmP2-eZzHH-38uyHQrJU0zypZPHDx_JzmwxD60R9P437s_1ufW_4C3UGBgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509470809</pqid></control><display><type>article</type><title>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</title><source>World Scientific Journals (Tsinghua Mirror)</source><source>World Scientific Journals</source><creator>BIELECKI, TOMASZ R. ; CHEN, TAO ; CIALENCO, IGOR</creator><creatorcontrib>BIELECKI, TOMASZ R. ; CHEN, TAO ; CIALENCO, IGOR</creatorcontrib><description>In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.</description><identifier>ISSN: 0219-0249</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S0219024921500035</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Discrete time ; Machine learning ; Markov analysis ; Portfolio management ; Stochastic control theory ; Uncertainty</subject><ispartof>International journal of theoretical and applied finance, 2021-02, Vol.24 (1), p.2150003</ispartof><rights>2021, World Scientific Publishing Company</rights><rights>COPYRIGHT 2021 World Scientific Publishing Co. Pte Ltd.</rights><rights>2021. World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</citedby><cites>FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</cites><orcidid>0000-0002-9608-7475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0219024921500035$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,776,780,3200,3207,4859,4860,27901,27902,55550,55562</link.rule.ids></links><search><creatorcontrib>BIELECKI, TOMASZ R.</creatorcontrib><creatorcontrib>CHEN, TAO</creatorcontrib><creatorcontrib>CIALENCO, IGOR</creatorcontrib><title>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</title><title>International journal of theoretical and applied finance</title><description>In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.</description><subject>Algorithms</subject><subject>Discrete time</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Portfolio management</subject><subject>Stochastic control theory</subject><subject>Uncertainty</subject><issn>0219-0249</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkUtv1DAUhS0EEqPSH8DOEhK7wLXjV5YhdRmLJB4lbhGrKA9PFTRM2nhGwIbfTqJBbLq6V_d859zFQegtgQ-EMPqxBkoSoCyhhANAzF-gDZFJHImY0pdos8rRqr9G1yGMHZBExJyKeIP-OFPoyJSZLWtTO106XKTVF3tv0hIvR1fZHO8q-ynXRY3vyhtd4cLe6HzZM1251JTuG_5q3Banu11ustQZW2JnsdtqXOi0jO7TagnLNN7Zyt3a3Fhc61xnK_gGvdq3h-Cv_80rdHerXbaNcvt5ycqjPmacR4MA0bFBCaVYK2kv1cAk8Z56BVIMIPfQDtD7oQNGuFTKEzmoLmFABFcdia_Qu0vu4zw9nX04Nd-n83xcXjaUQ8IkKEgW6v2FemgPvhmP_XQ8-V-nh_YcQtOkgksuY85WkFzAfp5CmP2-eZzHH-38uyHQrJU0zypZPHDx_JzmwxD60R9P437s_1ufW_4C3UGBgQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>BIELECKI, TOMASZ R.</creator><creator>CHEN, TAO</creator><creator>CIALENCO, IGOR</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte Ltd</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-9608-7475</orcidid></search><sort><creationdate>202102</creationdate><title>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</title><author>BIELECKI, TOMASZ R. ; CHEN, TAO ; CIALENCO, IGOR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-d606b4d86884a72c78d471ee2e8076d07f0ad0cedb0415788e17d8b9401658b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Discrete time</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Portfolio management</topic><topic>Stochastic control theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BIELECKI, TOMASZ R.</creatorcontrib><creatorcontrib>CHEN, TAO</creatorcontrib><creatorcontrib>CIALENCO, IGOR</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International journal of theoretical and applied finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BIELECKI, TOMASZ R.</au><au>CHEN, TAO</au><au>CIALENCO, IGOR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION</atitle><jtitle>International journal of theoretical and applied finance</jtitle><date>2021-02</date><risdate>2021</risdate><volume>24</volume><issue>1</issue><spage>2150003</spage><pages>2150003-</pages><issn>0219-0249</issn><eissn>1793-6322</eissn><abstract>In this paper, we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic control method to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results and by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0219024921500035</doi><orcidid>https://orcid.org/0000-0002-9608-7475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-0249 |
ispartof | International journal of theoretical and applied finance, 2021-02, Vol.24 (1), p.2150003 |
issn | 0219-0249 1793-6322 |
language | eng |
recordid | cdi_worldscientific_primary_S0219024921500035 |
source | World Scientific Journals (Tsinghua Mirror); World Scientific Journals |
subjects | Algorithms Discrete time Machine learning Markov analysis Portfolio management Stochastic control theory Uncertainty |
title | TIME-INCONSISTENT MARKOVIAN CONTROL PROBLEMS UNDER MODEL UNCERTAINTY WITH APPLICATION TO THE MEAN-VARIANCE PORTFOLIO SELECTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TIME-INCONSISTENT%20MARKOVIAN%20CONTROL%20PROBLEMS%20UNDER%20MODEL%20UNCERTAINTY%20WITH%20APPLICATION%20TO%20THE%20MEAN-VARIANCE%20PORTFOLIO%20SELECTION&rft.jtitle=International%20journal%20of%20theoretical%20and%20applied%20finance&rft.au=BIELECKI,%20TOMASZ%20R.&rft.date=2021-02&rft.volume=24&rft.issue=1&rft.spage=2150003&rft.pages=2150003-&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S0219024921500035&rft_dat=%3Cgale_world%3EA657573549%3C/gale_world%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509470809&rft_id=info:pmid/&rft_galeid=A657573549&rfr_iscdi=true |