EFFICIENT HEDGING FOR DEFAULTABLE SECURITIES AND ITS APPLICATION TO EQUITY-LINKED LIFE INSURANCE CONTRACTS

The paper deals with efficient hedging problem for defaultable securities with multiple default times and nonzero recovery rates. First, we convert the efficient hedging problem into a Neyman–Pearson problem with composite hypothesis against a simple alternative. Then we apply nonsmooth convex duali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical and applied finance 2015-11, Vol.18 (7), p.1550047
Hauptverfasser: MELNIKOV, ALEXANDER, NOSRATI, AMIR
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1550047
container_title International journal of theoretical and applied finance
container_volume 18
creator MELNIKOV, ALEXANDER
NOSRATI, AMIR
description The paper deals with efficient hedging problem for defaultable securities with multiple default times and nonzero recovery rates. First, we convert the efficient hedging problem into a Neyman–Pearson problem with composite hypothesis against a simple alternative. Then we apply nonsmooth convex duality to provide a solution in the framework of a “defaultable” Black–Scholes model. Moreover, in the case of zero recovery rates, we find a closed form solution for the problem. As an application, it is shown how to use such type of results in pricing equity-linked life insurance contracts. The results are also demonstrated by some numerical examples.
doi_str_mv 10.1142/S0219024915500478
format Article
fullrecord <record><control><sourceid>worldscientific_cross</sourceid><recordid>TN_cdi_worldscientific_primary_S0219024915500478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>S0219024915500478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3088-ec2e358149d5dab6e96eb3faf1799fe9580d33a6b810b127e1183a48d374588a3</originalsourceid><addsrcrecordid>eNplkMtKxDAARYMoOIzzAe7yA9U8mjZZ1jSdCYZ0bNOFq9JHCpXRkVYQ_94OI25mdReXc-BeAO4xesA4JI8lIlggEgrMGEJhzK_ACseCBhEl5BqsTnVw6m_BZp7HFmERUUYiugJvKsu01Mo6uFPpVtstzPICpipLKuOSJ6NgqWRVaKdVCRObQu2W3O-NlonTuYUuh-ql0u41MNo-qxQanSmobVkViZUKyty6IpGuvAM3Q3OY_eYv16DKlJO7wOTbRWaCjiLOA98RTxnHoehZ37SRF5Fv6dAMyyIxeME46iltopZj1GISe4w5bULe0zhknDd0DfDZ203HeZ78UH9O43sz_dQY1ae_6ou_Fgadme_jdOjnbvQfX-Mwdv_oJfILnVJjVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EFFICIENT HEDGING FOR DEFAULTABLE SECURITIES AND ITS APPLICATION TO EQUITY-LINKED LIFE INSURANCE CONTRACTS</title><source>World Scientific Journals (Tsinghua Mirror)</source><source>World Scientific Journals</source><creator>MELNIKOV, ALEXANDER ; NOSRATI, AMIR</creator><creatorcontrib>MELNIKOV, ALEXANDER ; NOSRATI, AMIR</creatorcontrib><description>The paper deals with efficient hedging problem for defaultable securities with multiple default times and nonzero recovery rates. First, we convert the efficient hedging problem into a Neyman–Pearson problem with composite hypothesis against a simple alternative. Then we apply nonsmooth convex duality to provide a solution in the framework of a “defaultable” Black–Scholes model. Moreover, in the case of zero recovery rates, we find a closed form solution for the problem. As an application, it is shown how to use such type of results in pricing equity-linked life insurance contracts. The results are also demonstrated by some numerical examples.</description><identifier>ISSN: 0219-0249</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S0219024915500478</identifier><language>eng</language><publisher>World Scientific Publishing Company</publisher><ispartof>International journal of theoretical and applied finance, 2015-11, Vol.18 (7), p.1550047</ispartof><rights>2015, World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3088-ec2e358149d5dab6e96eb3faf1799fe9580d33a6b810b127e1183a48d374588a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0219024915500478$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,776,780,3199,3206,4858,4859,27903,27904,55553,55565</link.rule.ids></links><search><creatorcontrib>MELNIKOV, ALEXANDER</creatorcontrib><creatorcontrib>NOSRATI, AMIR</creatorcontrib><title>EFFICIENT HEDGING FOR DEFAULTABLE SECURITIES AND ITS APPLICATION TO EQUITY-LINKED LIFE INSURANCE CONTRACTS</title><title>International journal of theoretical and applied finance</title><description>The paper deals with efficient hedging problem for defaultable securities with multiple default times and nonzero recovery rates. First, we convert the efficient hedging problem into a Neyman–Pearson problem with composite hypothesis against a simple alternative. Then we apply nonsmooth convex duality to provide a solution in the framework of a “defaultable” Black–Scholes model. Moreover, in the case of zero recovery rates, we find a closed form solution for the problem. As an application, it is shown how to use such type of results in pricing equity-linked life insurance contracts. The results are also demonstrated by some numerical examples.</description><issn>0219-0249</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplkMtKxDAARYMoOIzzAe7yA9U8mjZZ1jSdCYZ0bNOFq9JHCpXRkVYQ_94OI25mdReXc-BeAO4xesA4JI8lIlggEgrMGEJhzK_ACseCBhEl5BqsTnVw6m_BZp7HFmERUUYiugJvKsu01Mo6uFPpVtstzPICpipLKuOSJ6NgqWRVaKdVCRObQu2W3O-NlonTuYUuh-ql0u41MNo-qxQanSmobVkViZUKyty6IpGuvAM3Q3OY_eYv16DKlJO7wOTbRWaCjiLOA98RTxnHoehZ37SRF5Fv6dAMyyIxeME46iltopZj1GISe4w5bULe0zhknDd0DfDZ203HeZ78UH9O43sz_dQY1ae_6ou_Fgadme_jdOjnbvQfX-Mwdv_oJfILnVJjVQ</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>MELNIKOV, ALEXANDER</creator><creator>NOSRATI, AMIR</creator><general>World Scientific Publishing Company</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201511</creationdate><title>EFFICIENT HEDGING FOR DEFAULTABLE SECURITIES AND ITS APPLICATION TO EQUITY-LINKED LIFE INSURANCE CONTRACTS</title><author>MELNIKOV, ALEXANDER ; NOSRATI, AMIR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3088-ec2e358149d5dab6e96eb3faf1799fe9580d33a6b810b127e1183a48d374588a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MELNIKOV, ALEXANDER</creatorcontrib><creatorcontrib>NOSRATI, AMIR</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical and applied finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MELNIKOV, ALEXANDER</au><au>NOSRATI, AMIR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFFICIENT HEDGING FOR DEFAULTABLE SECURITIES AND ITS APPLICATION TO EQUITY-LINKED LIFE INSURANCE CONTRACTS</atitle><jtitle>International journal of theoretical and applied finance</jtitle><date>2015-11</date><risdate>2015</risdate><volume>18</volume><issue>7</issue><spage>1550047</spage><pages>1550047-</pages><issn>0219-0249</issn><eissn>1793-6322</eissn><abstract>The paper deals with efficient hedging problem for defaultable securities with multiple default times and nonzero recovery rates. First, we convert the efficient hedging problem into a Neyman–Pearson problem with composite hypothesis against a simple alternative. Then we apply nonsmooth convex duality to provide a solution in the framework of a “defaultable” Black–Scholes model. Moreover, in the case of zero recovery rates, we find a closed form solution for the problem. As an application, it is shown how to use such type of results in pricing equity-linked life insurance contracts. The results are also demonstrated by some numerical examples.</abstract><pub>World Scientific Publishing Company</pub><doi>10.1142/S0219024915500478</doi></addata></record>
fulltext fulltext
identifier ISSN: 0219-0249
ispartof International journal of theoretical and applied finance, 2015-11, Vol.18 (7), p.1550047
issn 0219-0249
1793-6322
language eng
recordid cdi_worldscientific_primary_S0219024915500478
source World Scientific Journals (Tsinghua Mirror); World Scientific Journals
title EFFICIENT HEDGING FOR DEFAULTABLE SECURITIES AND ITS APPLICATION TO EQUITY-LINKED LIFE INSURANCE CONTRACTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-worldscientific_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFFICIENT%20HEDGING%20FOR%20DEFAULTABLE%20SECURITIES%20AND%20ITS%20APPLICATION%20TO%20EQUITY-LINKED%20LIFE%20INSURANCE%20CONTRACTS&rft.jtitle=International%20journal%20of%20theoretical%20and%20applied%20finance&rft.au=MELNIKOV,%20ALEXANDER&rft.date=2015-11&rft.volume=18&rft.issue=7&rft.spage=1550047&rft.pages=1550047-&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S0219024915500478&rft_dat=%3Cworldscientific_cross%3ES0219024915500478%3C/worldscientific_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true