CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS

In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractals (Singapore) 2024, Vol.32 (2)
Hauptverfasser: YU, BINYAN, LIANG, YONGSHUN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Fractals (Singapore)
container_volume 32
creator YU, BINYAN
LIANG, YONGSHUN
description In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation on [ 0 , 1 ] monotonously and unanimously, meanwhile their graphs can be any value of the Hausdorff and the Box dimension between one and two. Further, such approximation for continuous functions of unbounded variation or even general continuous functions with non-integer fractal dimension has also been discussed elementarily.
doi_str_mv 10.1142/S0218348X24400061
format Article
fullrecord <record><control><sourceid>crossref_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0218348X24400061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1142_S0218348X24400061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3291-44c774c13ff1bb1fb3607ba9d01f1e11f939caf552863a0f3b6a4981ca906dfa3</originalsourceid><addsrcrecordid>eNplkMtOhDAUhhujiTj6AO54AbSHlkuXyMBIAi3hkowrUgpNMKNjwMT49sJgZjOLk5Oc7__O4kfoEfATALWfS2yDT6i_tynFGLtwhQzwGLFch5JrZCzYWvgtupum9zlCKVADtaHgZVXUYZUIborYzAQX1Tx1aQZ5Xoh9kgUn9vJmxkUQVkFqJryKilykK4hrfrJngW_PmW2SRbxczvfoRsvD1D_87w2q46gKX61U7JIwSC1FbAYWpcrzqAKiNbQt6Ja42Gsl6zBo6AE0I0xJ7Ti27xKJNWldSZkPSjLsdlqSDYL1rxqP0zT2uvkahw85_jaAm6Wk5qKk2cGr83McD92khv7ze9CDOquXyh_bOGIK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS</title><source>World Scientific Open</source><creator>YU, BINYAN ; LIANG, YONGSHUN</creator><creatorcontrib>YU, BINYAN ; LIANG, YONGSHUN</creatorcontrib><description>In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation on [ 0 , 1 ] monotonously and unanimously, meanwhile their graphs can be any value of the Hausdorff and the Box dimension between one and two. Further, such approximation for continuous functions of unbounded variation or even general continuous functions with non-integer fractal dimension has also been discussed elementarily.</description><identifier>ISSN: 0218-348X</identifier><identifier>EISSN: 1793-6543</identifier><identifier>DOI: 10.1142/S0218348X24400061</identifier><language>eng</language><publisher>World Scientific Publishing Company</publisher><ispartof>Fractals (Singapore), 2024, Vol.32 (2)</ispartof><rights>2024, The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3291-44c774c13ff1bb1fb3607ba9d01f1e11f939caf552863a0f3b6a4981ca906dfa3</citedby><cites>FETCH-LOGICAL-c3291-44c774c13ff1bb1fb3607ba9d01f1e11f939caf552863a0f3b6a4981ca906dfa3</cites><orcidid>0000-0002-9394-6502 ; 0000-0003-1899-7892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0218348X24400061$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,4024,27497,27923,27924,27925,55569</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0218348X24400061$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU, BINYAN</creatorcontrib><creatorcontrib>LIANG, YONGSHUN</creatorcontrib><title>CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS</title><title>Fractals (Singapore)</title><description>In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation on [ 0 , 1 ] monotonously and unanimously, meanwhile their graphs can be any value of the Hausdorff and the Box dimension between one and two. Further, such approximation for continuous functions of unbounded variation or even general continuous functions with non-integer fractal dimension has also been discussed elementarily.</description><issn>0218-348X</issn><issn>1793-6543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkMtOhDAUhhujiTj6AO54AbSHlkuXyMBIAi3hkowrUgpNMKNjwMT49sJgZjOLk5Oc7__O4kfoEfATALWfS2yDT6i_tynFGLtwhQzwGLFch5JrZCzYWvgtupum9zlCKVADtaHgZVXUYZUIborYzAQX1Tx1aQZ5Xoh9kgUn9vJmxkUQVkFqJryKilykK4hrfrJngW_PmW2SRbxczvfoRsvD1D_87w2q46gKX61U7JIwSC1FbAYWpcrzqAKiNbQt6Ja42Gsl6zBo6AE0I0xJ7Ti27xKJNWldSZkPSjLsdlqSDYL1rxqP0zT2uvkahw85_jaAm6Wk5qKk2cGr83McD92khv7ze9CDOquXyh_bOGIK</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>YU, BINYAN</creator><creator>LIANG, YONGSHUN</creator><general>World Scientific Publishing Company</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9394-6502</orcidid><orcidid>https://orcid.org/0000-0003-1899-7892</orcidid></search><sort><creationdate>2024</creationdate><title>CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS</title><author>YU, BINYAN ; LIANG, YONGSHUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3291-44c774c13ff1bb1fb3607ba9d01f1e11f939caf552863a0f3b6a4981ca906dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YU, BINYAN</creatorcontrib><creatorcontrib>LIANG, YONGSHUN</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><jtitle>Fractals (Singapore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU, BINYAN</au><au>LIANG, YONGSHUN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS</atitle><jtitle>Fractals (Singapore)</jtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><issue>2</issue><issn>0218-348X</issn><eissn>1793-6543</eissn><abstract>In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation on [ 0 , 1 ] monotonously and unanimously, meanwhile their graphs can be any value of the Hausdorff and the Box dimension between one and two. Further, such approximation for continuous functions of unbounded variation or even general continuous functions with non-integer fractal dimension has also been discussed elementarily.</abstract><pub>World Scientific Publishing Company</pub><doi>10.1142/S0218348X24400061</doi><orcidid>https://orcid.org/0000-0002-9394-6502</orcidid><orcidid>https://orcid.org/0000-0003-1899-7892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0218-348X
ispartof Fractals (Singapore), 2024, Vol.32 (2)
issn 0218-348X
1793-6543
language eng
recordid cdi_worldscientific_primary_S0218348X24400061
source World Scientific Open
title CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONSTRUCTION%20OF%20MONOTONOUS%20APPROXIMATION%20BY%20FRACTAL%20INTERPOLATION%20FUNCTIONS%20AND%20FRACTAL%20DIMENSIONS&rft.jtitle=Fractals%20(Singapore)&rft.au=YU,%20BINYAN&rft.date=2024&rft.volume=32&rft.issue=2&rft.issn=0218-348X&rft.eissn=1793-6543&rft_id=info:doi/10.1142/S0218348X24400061&rft_dat=%3Ccrossref_ADCHV%3E10_1142_S0218348X24400061%3C/crossref_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true