A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

In this paper, a hybrid approach is presented for the numerical solution of three-dimensional parabolic partial differential equations. This new approach is applicable to both linear and nonlinear parabolic problems including systems. This hybrid numerical technique is based on the Haar wavelet coll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractals (Singapore) 2023, Vol.31 (2)
Hauptverfasser: ASIF, MUHAMMAD, AMIN, ROHUL, HAIDER, NADEEM, KHAN, IMRAN, AL-MDALLAL, QASEM M., SAID, SALEM BEN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Fractals (Singapore)
container_volume 31
creator ASIF, MUHAMMAD
AMIN, ROHUL
HAIDER, NADEEM
KHAN, IMRAN
AL-MDALLAL, QASEM M.
SAID, SALEM BEN
description In this paper, a hybrid approach is presented for the numerical solution of three-dimensional parabolic partial differential equations. This new approach is applicable to both linear and nonlinear parabolic problems including systems. This hybrid numerical technique is based on the Haar wavelet collocation technique and the finite difference method. In this technique, the space derivative is approximated by truncated Haar wavelet series whereas the time derivative is approximated by finite difference method. The aforementioned proposed algorithms are very simple and can easily be implemented in any computer-oriented language efficiently. In order to demonstrate the efficiency and better accuracy of the newly developed numerical technique it is applied to some well-known examples from previous literature that comprises linear and nonlinear three-dimensional parabolic equations including systems. The obtained results affirm better accuracy and widespread applicability of the newly proposed numerical technique for a range of benchmark problems.
doi_str_mv 10.1142/S0218348X23400182
format Article
fullrecord <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0218348X23400182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813106610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-73d4989165921d5945d3e2fe4c3cccd5bc5876e817fc778defe2b42fe1dbdbb03</originalsourceid><addsrcrecordid>eNplkM1Og0AUhSdGE2v1AdyRuEbnDxiWFIYyCQU7gNEVKcOQ0NRSwcb49oI1brq69-ac757kAHCP4CNCFD9lECNGKHvFhEKIGL4AM-S4xLQtSi7BbJLNSb8GN8OwhRBSiugMHDwjeltIERhJseJS-F5s5NyPErEuuBGm0sjS-EUkSyOPJOdmIFY8yUSajL6M-2kSmKkMuDSePekt0lj405aLUQ5EGHLJk9-DrwsvH7HsFlw1m92g7_7mHBQhz_3IjNPllG4qYjnYdEhNXeYi23Ixqi2XWjXRuNFUEaVUbVXKYo6tGXIa5Tis1o3GFR0NqK7qqoJkDh5Ofw9993HUw2e57Y79fowsMUMEQdtGkwudXKrvhqHXTXno2_dN_10iWE7FlmfFjgw8MV9dv6sH1er9Z9u06h89R34A1XNxcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813106610</pqid></control><display><type>article</type><title>A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS</title><source>World Scientific Open</source><creator>ASIF, MUHAMMAD ; AMIN, ROHUL ; HAIDER, NADEEM ; KHAN, IMRAN ; AL-MDALLAL, QASEM M. ; SAID, SALEM BEN</creator><creatorcontrib>ASIF, MUHAMMAD ; AMIN, ROHUL ; HAIDER, NADEEM ; KHAN, IMRAN ; AL-MDALLAL, QASEM M. ; SAID, SALEM BEN</creatorcontrib><description>In this paper, a hybrid approach is presented for the numerical solution of three-dimensional parabolic partial differential equations. This new approach is applicable to both linear and nonlinear parabolic problems including systems. This hybrid numerical technique is based on the Haar wavelet collocation technique and the finite difference method. In this technique, the space derivative is approximated by truncated Haar wavelet series whereas the time derivative is approximated by finite difference method. The aforementioned proposed algorithms are very simple and can easily be implemented in any computer-oriented language efficiently. In order to demonstrate the efficiency and better accuracy of the newly developed numerical technique it is applied to some well-known examples from previous literature that comprises linear and nonlinear three-dimensional parabolic equations including systems. The obtained results affirm better accuracy and widespread applicability of the newly proposed numerical technique for a range of benchmark problems.</description><identifier>ISSN: 0218-348X</identifier><identifier>EISSN: 1793-6543</identifier><identifier>DOI: 10.1142/S0218348X23400182</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Approximation ; Finite difference method ; Hybrid systems ; Mathematical analysis ; Parabolic differential equations ; Partial differential equations</subject><ispartof>Fractals (Singapore), 2023, Vol.31 (2)</ispartof><rights>2023, The Author(s)</rights><rights>2023. The Author(s). This is an Open Access article in the “Special Issue on Applications of Wavelets and Fractals in Engineering Sciences”, edited by K. S. Nisar (Prince Sattam bin Abdulaziz University, Saudi Arabia), F. A. Shah (University of Kashmir, India), S. K. Upadhyay (Indian Institute of Technology, BHU, India), P. E. T. Jorgensen (University of Iowa, USA) published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-73d4989165921d5945d3e2fe4c3cccd5bc5876e817fc778defe2b42fe1dbdbb03</citedby><cites>FETCH-LOGICAL-c3572-73d4989165921d5945d3e2fe4c3cccd5bc5876e817fc778defe2b42fe1dbdbb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0218348X23400182$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,4010,27478,27904,27905,27906,55550</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0218348X23400182$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ASIF, MUHAMMAD</creatorcontrib><creatorcontrib>AMIN, ROHUL</creatorcontrib><creatorcontrib>HAIDER, NADEEM</creatorcontrib><creatorcontrib>KHAN, IMRAN</creatorcontrib><creatorcontrib>AL-MDALLAL, QASEM M.</creatorcontrib><creatorcontrib>SAID, SALEM BEN</creatorcontrib><title>A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS</title><title>Fractals (Singapore)</title><description>In this paper, a hybrid approach is presented for the numerical solution of three-dimensional parabolic partial differential equations. This new approach is applicable to both linear and nonlinear parabolic problems including systems. This hybrid numerical technique is based on the Haar wavelet collocation technique and the finite difference method. In this technique, the space derivative is approximated by truncated Haar wavelet series whereas the time derivative is approximated by finite difference method. The aforementioned proposed algorithms are very simple and can easily be implemented in any computer-oriented language efficiently. In order to demonstrate the efficiency and better accuracy of the newly developed numerical technique it is applied to some well-known examples from previous literature that comprises linear and nonlinear three-dimensional parabolic equations including systems. The obtained results affirm better accuracy and widespread applicability of the newly proposed numerical technique for a range of benchmark problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Finite difference method</subject><subject>Hybrid systems</subject><subject>Mathematical analysis</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><issn>0218-348X</issn><issn>1793-6543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkM1Og0AUhSdGE2v1AdyRuEbnDxiWFIYyCQU7gNEVKcOQ0NRSwcb49oI1brq69-ac757kAHCP4CNCFD9lECNGKHvFhEKIGL4AM-S4xLQtSi7BbJLNSb8GN8OwhRBSiugMHDwjeltIERhJseJS-F5s5NyPErEuuBGm0sjS-EUkSyOPJOdmIFY8yUSajL6M-2kSmKkMuDSePekt0lj405aLUQ5EGHLJk9-DrwsvH7HsFlw1m92g7_7mHBQhz_3IjNPllG4qYjnYdEhNXeYi23Ixqi2XWjXRuNFUEaVUbVXKYo6tGXIa5Tis1o3GFR0NqK7qqoJkDh5Ofw9993HUw2e57Y79fowsMUMEQdtGkwudXKrvhqHXTXno2_dN_10iWE7FlmfFjgw8MV9dv6sH1er9Z9u06h89R34A1XNxcA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>ASIF, MUHAMMAD</creator><creator>AMIN, ROHUL</creator><creator>HAIDER, NADEEM</creator><creator>KHAN, IMRAN</creator><creator>AL-MDALLAL, QASEM M.</creator><creator>SAID, SALEM BEN</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS</title><author>ASIF, MUHAMMAD ; AMIN, ROHUL ; HAIDER, NADEEM ; KHAN, IMRAN ; AL-MDALLAL, QASEM M. ; SAID, SALEM BEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-73d4989165921d5945d3e2fe4c3cccd5bc5876e817fc778defe2b42fe1dbdbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Finite difference method</topic><topic>Hybrid systems</topic><topic>Mathematical analysis</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASIF, MUHAMMAD</creatorcontrib><creatorcontrib>AMIN, ROHUL</creatorcontrib><creatorcontrib>HAIDER, NADEEM</creatorcontrib><creatorcontrib>KHAN, IMRAN</creatorcontrib><creatorcontrib>AL-MDALLAL, QASEM M.</creatorcontrib><creatorcontrib>SAID, SALEM BEN</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><jtitle>Fractals (Singapore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ASIF, MUHAMMAD</au><au>AMIN, ROHUL</au><au>HAIDER, NADEEM</au><au>KHAN, IMRAN</au><au>AL-MDALLAL, QASEM M.</au><au>SAID, SALEM BEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS</atitle><jtitle>Fractals (Singapore)</jtitle><date>2023</date><risdate>2023</risdate><volume>31</volume><issue>2</issue><issn>0218-348X</issn><eissn>1793-6543</eissn><abstract>In this paper, a hybrid approach is presented for the numerical solution of three-dimensional parabolic partial differential equations. This new approach is applicable to both linear and nonlinear parabolic problems including systems. This hybrid numerical technique is based on the Haar wavelet collocation technique and the finite difference method. In this technique, the space derivative is approximated by truncated Haar wavelet series whereas the time derivative is approximated by finite difference method. The aforementioned proposed algorithms are very simple and can easily be implemented in any computer-oriented language efficiently. In order to demonstrate the efficiency and better accuracy of the newly developed numerical technique it is applied to some well-known examples from previous literature that comprises linear and nonlinear three-dimensional parabolic equations including systems. The obtained results affirm better accuracy and widespread applicability of the newly proposed numerical technique for a range of benchmark problems.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0218348X23400182</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0218-348X
ispartof Fractals (Singapore), 2023, Vol.31 (2)
issn 0218-348X
1793-6543
language eng
recordid cdi_worldscientific_primary_S0218348X23400182
source World Scientific Open
subjects Algorithms
Approximation
Finite difference method
Hybrid systems
Mathematical analysis
Parabolic differential equations
Partial differential equations
title A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HYBRID%20NUMERICAL%20TECHNIQUE%20FOR%20SOLVING%20THREE-DIMENSIONAL%20SECOND-ORDER%20PARABOLIC%20PARTIAL%20DIFFERENTIAL%20EQUATIONS&rft.jtitle=Fractals%20(Singapore)&rft.au=ASIF,%20MUHAMMAD&rft.date=2023&rft.volume=31&rft.issue=2&rft.issn=0218-348X&rft.eissn=1793-6543&rft_id=info:doi/10.1142/S0218348X23400182&rft_dat=%3Cproquest_ADCHV%3E2813106610%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813106610&rft_id=info:pmid/&rfr_iscdi=true