APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS

By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional q -differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about end...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractals (Singapore) 2020-12, Vol.28 (8), p.2040029
Hauptverfasser: AYDOGAN, S. M., AGUILAR, J. F. GÓMEZ, BALEANU, D., REZAPOUR, SH, SAMEI, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2040029
container_title Fractals (Singapore)
container_volume 28
creator AYDOGAN, S. M.
AGUILAR, J. F. GÓMEZ
BALEANU, D.
REZAPOUR, SH
SAMEI, M. E.
description By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional q -differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.
doi_str_mv 10.1142/S0218348X20400290
format Article
fullrecord <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0218348X20400290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474516892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</originalsourceid><addsrcrecordid>eNplkE1Pg0AQhjdGE2v1B3jbxDM6-8ECR6SgJJQlLCT1ROgCCbX2A9oY_71gGy89TSbP-8wkL0KPBJ4J4fRFASU24_aCAgegDlyhCbEcZgiTs2s0GbEx8lt01_crAOCc8An6dJMklYtw7mY-9uNZIsM4w0pGeRbKWOFAptjFXuQqhWWAg9T1RuBGeG_MwiDwUz_OwmENYy_K1Z_z-oE9OU_yzD1HU1_lUabu0U1Trvv64TynKA_8zHs3IvkWem5kaGZaYGjLYiXjgtVm04AAJhpmL2tGBJRsqUuLUUKrquEVbZhDdQUUysoUFqksIYRmU_R0urvrtvtj3R-K1fbYbYaXBeUWN4mwHTqkyCmlu23fd3VT7Lr2q-x-CgLF2Glx0engwMn53nbrqtdtvTm0Tav_1UvlF6Twb3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474516892</pqid></control><display><type>article</type><title>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</title><source>World Scientific Open</source><creator>AYDOGAN, S. M. ; AGUILAR, J. F. GÓMEZ ; BALEANU, D. ; REZAPOUR, SH ; SAMEI, M. E.</creator><creatorcontrib>AYDOGAN, S. M. ; AGUILAR, J. F. GÓMEZ ; BALEANU, D. ; REZAPOUR, SH ; SAMEI, M. E.</creatorcontrib><description>By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional q -differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.</description><identifier>ISSN: 0218-348X</identifier><identifier>EISSN: 1793-6543</identifier><identifier>DOI: 10.1142/S0218348X20400290</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Fixed points (mathematics) ; Inclusions</subject><ispartof>Fractals (Singapore), 2020-12, Vol.28 (8), p.2040029</ispartof><rights>2020, The Author(s)</rights><rights>2020. The Author(s). This is an Open Access article in the “Special Issue on Fractal and Fractional with Applications to Nature” published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</citedby><cites>FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0218348X20400290$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27476,27903,27904,55548</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0218348X20400290$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AYDOGAN, S. M.</creatorcontrib><creatorcontrib>AGUILAR, J. F. GÓMEZ</creatorcontrib><creatorcontrib>BALEANU, D.</creatorcontrib><creatorcontrib>REZAPOUR, SH</creatorcontrib><creatorcontrib>SAMEI, M. E.</creatorcontrib><title>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</title><title>Fractals (Singapore)</title><description>By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional q -differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.</description><subject>Algorithms</subject><subject>Fixed points (mathematics)</subject><subject>Inclusions</subject><issn>0218-348X</issn><issn>1793-6543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkE1Pg0AQhjdGE2v1B3jbxDM6-8ECR6SgJJQlLCT1ROgCCbX2A9oY_71gGy89TSbP-8wkL0KPBJ4J4fRFASU24_aCAgegDlyhCbEcZgiTs2s0GbEx8lt01_crAOCc8An6dJMklYtw7mY-9uNZIsM4w0pGeRbKWOFAptjFXuQqhWWAg9T1RuBGeG_MwiDwUz_OwmENYy_K1Z_z-oE9OU_yzD1HU1_lUabu0U1Trvv64TynKA_8zHs3IvkWem5kaGZaYGjLYiXjgtVm04AAJhpmL2tGBJRsqUuLUUKrquEVbZhDdQUUysoUFqksIYRmU_R0urvrtvtj3R-K1fbYbYaXBeUWN4mwHTqkyCmlu23fd3VT7Lr2q-x-CgLF2Glx0engwMn53nbrqtdtvTm0Tav_1UvlF6Twb3g</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>AYDOGAN, S. M.</creator><creator>AGUILAR, J. F. GÓMEZ</creator><creator>BALEANU, D.</creator><creator>REZAPOUR, SH</creator><creator>SAMEI, M. E.</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</title><author>AYDOGAN, S. M. ; AGUILAR, J. F. GÓMEZ ; BALEANU, D. ; REZAPOUR, SH ; SAMEI, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Fixed points (mathematics)</topic><topic>Inclusions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AYDOGAN, S. M.</creatorcontrib><creatorcontrib>AGUILAR, J. F. GÓMEZ</creatorcontrib><creatorcontrib>BALEANU, D.</creatorcontrib><creatorcontrib>REZAPOUR, SH</creatorcontrib><creatorcontrib>SAMEI, M. E.</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><jtitle>Fractals (Singapore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AYDOGAN, S. M.</au><au>AGUILAR, J. F. GÓMEZ</au><au>BALEANU, D.</au><au>REZAPOUR, SH</au><au>SAMEI, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</atitle><jtitle>Fractals (Singapore)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>28</volume><issue>8</issue><spage>2040029</spage><pages>2040029-</pages><issn>0218-348X</issn><eissn>1793-6543</eissn><abstract>By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional q -differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0218348X20400290</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0218-348X
ispartof Fractals (Singapore), 2020-12, Vol.28 (8), p.2040029
issn 0218-348X
1793-6543
language eng
recordid cdi_worldscientific_primary_S0218348X20400290
source World Scientific Open
subjects Algorithms
Fixed points (mathematics)
Inclusions
title APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPROXIMATE%20ENDPOINT%20SOLUTIONS%20FOR%20A%20CLASS%20OF%20FRACTIONAL%20q-DIFFERENTIAL%20INCLUSIONS%20BY%20COMPUTATIONAL%20RESULTS&rft.jtitle=Fractals%20(Singapore)&rft.au=AYDOGAN,%20S.%20M.&rft.date=2020-12&rft.volume=28&rft.issue=8&rft.spage=2040029&rft.pages=2040029-&rft.issn=0218-348X&rft.eissn=1793-6543&rft_id=info:doi/10.1142/S0218348X20400290&rft_dat=%3Cproquest_ADCHV%3E2474516892%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474516892&rft_id=info:pmid/&rfr_iscdi=true