APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS
By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional q -differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about end...
Gespeichert in:
Veröffentlicht in: | Fractals (Singapore) 2020-12, Vol.28 (8), p.2040029 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 2040029 |
container_title | Fractals (Singapore) |
container_volume | 28 |
creator | AYDOGAN, S. M. AGUILAR, J. F. GÓMEZ BALEANU, D. REZAPOUR, SH SAMEI, M. E. |
description | By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional
q
-differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results. |
doi_str_mv | 10.1142/S0218348X20400290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0218348X20400290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474516892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</originalsourceid><addsrcrecordid>eNplkE1Pg0AQhjdGE2v1B3jbxDM6-8ECR6SgJJQlLCT1ROgCCbX2A9oY_71gGy89TSbP-8wkL0KPBJ4J4fRFASU24_aCAgegDlyhCbEcZgiTs2s0GbEx8lt01_crAOCc8An6dJMklYtw7mY-9uNZIsM4w0pGeRbKWOFAptjFXuQqhWWAg9T1RuBGeG_MwiDwUz_OwmENYy_K1Z_z-oE9OU_yzD1HU1_lUabu0U1Trvv64TynKA_8zHs3IvkWem5kaGZaYGjLYiXjgtVm04AAJhpmL2tGBJRsqUuLUUKrquEVbZhDdQUUysoUFqksIYRmU_R0urvrtvtj3R-K1fbYbYaXBeUWN4mwHTqkyCmlu23fd3VT7Lr2q-x-CgLF2Glx0engwMn53nbrqtdtvTm0Tav_1UvlF6Twb3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474516892</pqid></control><display><type>article</type><title>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</title><source>World Scientific Open</source><creator>AYDOGAN, S. M. ; AGUILAR, J. F. GÓMEZ ; BALEANU, D. ; REZAPOUR, SH ; SAMEI, M. E.</creator><creatorcontrib>AYDOGAN, S. M. ; AGUILAR, J. F. GÓMEZ ; BALEANU, D. ; REZAPOUR, SH ; SAMEI, M. E.</creatorcontrib><description>By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional
q
-differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.</description><identifier>ISSN: 0218-348X</identifier><identifier>EISSN: 1793-6543</identifier><identifier>DOI: 10.1142/S0218348X20400290</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Fixed points (mathematics) ; Inclusions</subject><ispartof>Fractals (Singapore), 2020-12, Vol.28 (8), p.2040029</ispartof><rights>2020, The Author(s)</rights><rights>2020. The Author(s). This is an Open Access article in the “Special Issue on Fractal and Fractional with Applications to Nature” published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</citedby><cites>FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0218348X20400290$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27476,27903,27904,55548</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0218348X20400290$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AYDOGAN, S. M.</creatorcontrib><creatorcontrib>AGUILAR, J. F. GÓMEZ</creatorcontrib><creatorcontrib>BALEANU, D.</creatorcontrib><creatorcontrib>REZAPOUR, SH</creatorcontrib><creatorcontrib>SAMEI, M. E.</creatorcontrib><title>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</title><title>Fractals (Singapore)</title><description>By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional
q
-differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.</description><subject>Algorithms</subject><subject>Fixed points (mathematics)</subject><subject>Inclusions</subject><issn>0218-348X</issn><issn>1793-6543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkE1Pg0AQhjdGE2v1B3jbxDM6-8ECR6SgJJQlLCT1ROgCCbX2A9oY_71gGy89TSbP-8wkL0KPBJ4J4fRFASU24_aCAgegDlyhCbEcZgiTs2s0GbEx8lt01_crAOCc8An6dJMklYtw7mY-9uNZIsM4w0pGeRbKWOFAptjFXuQqhWWAg9T1RuBGeG_MwiDwUz_OwmENYy_K1Z_z-oE9OU_yzD1HU1_lUabu0U1Trvv64TynKA_8zHs3IvkWem5kaGZaYGjLYiXjgtVm04AAJhpmL2tGBJRsqUuLUUKrquEVbZhDdQUUysoUFqksIYRmU_R0urvrtvtj3R-K1fbYbYaXBeUWN4mwHTqkyCmlu23fd3VT7Lr2q-x-CgLF2Glx0engwMn53nbrqtdtvTm0Tav_1UvlF6Twb3g</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>AYDOGAN, S. M.</creator><creator>AGUILAR, J. F. GÓMEZ</creator><creator>BALEANU, D.</creator><creator>REZAPOUR, SH</creator><creator>SAMEI, M. E.</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</title><author>AYDOGAN, S. M. ; AGUILAR, J. F. GÓMEZ ; BALEANU, D. ; REZAPOUR, SH ; SAMEI, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-c773a3463e5ff06036f38be3160a3bca73212ddf4d2f392cd020ad5671d7666c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Fixed points (mathematics)</topic><topic>Inclusions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AYDOGAN, S. M.</creatorcontrib><creatorcontrib>AGUILAR, J. F. GÓMEZ</creatorcontrib><creatorcontrib>BALEANU, D.</creatorcontrib><creatorcontrib>REZAPOUR, SH</creatorcontrib><creatorcontrib>SAMEI, M. E.</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><jtitle>Fractals (Singapore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AYDOGAN, S. M.</au><au>AGUILAR, J. F. GÓMEZ</au><au>BALEANU, D.</au><au>REZAPOUR, SH</au><au>SAMEI, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS</atitle><jtitle>Fractals (Singapore)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>28</volume><issue>8</issue><spage>2040029</spage><pages>2040029-</pages><issn>0218-348X</issn><eissn>1793-6543</eissn><abstract>By using the notion of endpoints for set-valued functions and some classical fixed point techniques, we investigate the existence of solutions for two fractional
q
-differential inclusions under some integral boundary value conditions. By providing an example, we illustrate our main result about endpoint. Also, we give some related algorithms and numerical results.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0218348X20400290</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0218-348X |
ispartof | Fractals (Singapore), 2020-12, Vol.28 (8), p.2040029 |
issn | 0218-348X 1793-6543 |
language | eng |
recordid | cdi_worldscientific_primary_S0218348X20400290 |
source | World Scientific Open |
subjects | Algorithms Fixed points (mathematics) Inclusions |
title | APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPROXIMATE%20ENDPOINT%20SOLUTIONS%20FOR%20A%20CLASS%20OF%20FRACTIONAL%20q-DIFFERENTIAL%20INCLUSIONS%20BY%20COMPUTATIONAL%20RESULTS&rft.jtitle=Fractals%20(Singapore)&rft.au=AYDOGAN,%20S.%20M.&rft.date=2020-12&rft.volume=28&rft.issue=8&rft.spage=2040029&rft.pages=2040029-&rft.issn=0218-348X&rft.eissn=1793-6543&rft_id=info:doi/10.1142/S0218348X20400290&rft_dat=%3Cproquest_ADCHV%3E2474516892%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474516892&rft_id=info:pmid/&rfr_iscdi=true |