Fabrication of 500 nm distributed Bragg reflector using Nb2O5-MgF2 multi-layer films

At first, we use an n & K analyzer to measure the optical properties (including refractive index n and extinction coefficient k ) of MgF2 and Nb2O5 single-layer films, in a wavelength range of 200–1700 nm for MgF2 film and in a wavelength range of 350–1500 nm for Nb2O5 film. After the refractive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern physics letters. B, Condensed matter physics, statistical physics, applied physics Condensed matter physics, statistical physics, applied physics, 2021-10, Vol.35 (29)
Hauptverfasser: Du, Yong, Chen, Bo-Syuan, Lin, Jing-Jenn, Tseng, Hsien-Wei, Wu, You-Lin, Yang, Cheng-Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 29
container_start_page
container_title Modern physics letters. B, Condensed matter physics, statistical physics, applied physics
container_volume 35
creator Du, Yong
Chen, Bo-Syuan
Lin, Jing-Jenn
Tseng, Hsien-Wei
Wu, You-Lin
Yang, Cheng-Fu
description At first, we use an n & K analyzer to measure the optical properties (including refractive index n and extinction coefficient k ) of MgF2 and Nb2O5 single-layer films, in a wavelength range of 200–1700 nm for MgF2 film and in a wavelength range of 350–1500 nm for Nb2O5 film. After the refractive indexes of MgF2 and Nb2O5 single-layer films are measured, we use the measured results to calculate the needed thicknesses of the quarter-wave (1/4 wavelength) MgF2 and Nb2O5 films for the designed green-light (500 nm) distributed Bragg reflectors (DBRs). After that, an E-beam is used to deposit the MgF2-Nb2O5 bilayer films (called as one period) with different periods (two, four, and six periods are deposited in this study) on glass substrates to fabricate the DBRs with a central wavelength of 500 nm. Then we use the field emission scanning electron microscopy (FESEM) to observe the surface images of Nb2O5 films on the different periods of MgF2-Nb2O5 bilayer films. The important novelty is that we use a Focused Ion Beam (FIB) to prepare the samples for the observations of the cross-sections of MgF2-Nb2O5 bilayer films, and those results can be sued to confirm the thicknesses of the bilayer films with different periods. We also compare the reflective ratio of the fabricated DBRs at the designed central wavelength with those calculated values by using the equation investigated by Sheppard. We find that the measured reflective ratios of the fabricated DBRs meet the calculated results obtained from Sheppard’s equation.
doi_str_mv 10.1142/S0217984921400017
format Article
fullrecord <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0217984921400017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579232921</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2677-74c875042247e3f99856a90252273788cd8cfedbe52698b2afda98735aa705083</originalsourceid><addsrcrecordid>eNplkE1LxDAYhIMouK7-AG8Bz9X0TdIkR12sCqt7cD2XNE1Kln6sSYrsv7fLevM0MPMwA4PQbU7u85zBwyeBXCjJFOSMEJKLM7SYDZoVBSPnaHGMs2N-ia5i3M0EEzxfoG2p6-CNTn4c8OgwJwQPPW58TMHXU7INfgq6bXGwrrMmjQFP0Q8t_qhhw7P3tgTcT13yWacPNmDnuz5eowunu2hv_nSJvsrn7eo1W29e3laP62wPhRCZYEYKThgAE5Y6pSQvtCLAAQQVUppGGmeb2nIolKxBu0YrKSjXWhBOJF2iu1PvPozfk42p2o1TGObJCrhQQGG-Y6bIifoZQ9dE4-2QvPOm2gff63Co_n1HfwFr6V-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579232921</pqid></control><display><type>article</type><title>Fabrication of 500 nm distributed Bragg reflector using Nb2O5-MgF2 multi-layer films</title><source>World Scientific Open</source><creator>Du, Yong ; Chen, Bo-Syuan ; Lin, Jing-Jenn ; Tseng, Hsien-Wei ; Wu, You-Lin ; Yang, Cheng-Fu</creator><creatorcontrib>Du, Yong ; Chen, Bo-Syuan ; Lin, Jing-Jenn ; Tseng, Hsien-Wei ; Wu, You-Lin ; Yang, Cheng-Fu</creatorcontrib><description>At first, we use an n &amp; K analyzer to measure the optical properties (including refractive index n and extinction coefficient k ) of MgF2 and Nb2O5 single-layer films, in a wavelength range of 200–1700 nm for MgF2 film and in a wavelength range of 350–1500 nm for Nb2O5 film. After the refractive indexes of MgF2 and Nb2O5 single-layer films are measured, we use the measured results to calculate the needed thicknesses of the quarter-wave (1/4 wavelength) MgF2 and Nb2O5 films for the designed green-light (500 nm) distributed Bragg reflectors (DBRs). After that, an E-beam is used to deposit the MgF2-Nb2O5 bilayer films (called as one period) with different periods (two, four, and six periods are deposited in this study) on glass substrates to fabricate the DBRs with a central wavelength of 500 nm. Then we use the field emission scanning electron microscopy (FESEM) to observe the surface images of Nb2O5 films on the different periods of MgF2-Nb2O5 bilayer films. The important novelty is that we use a Focused Ion Beam (FIB) to prepare the samples for the observations of the cross-sections of MgF2-Nb2O5 bilayer films, and those results can be sued to confirm the thicknesses of the bilayer films with different periods. We also compare the reflective ratio of the fabricated DBRs at the designed central wavelength with those calculated values by using the equation investigated by Sheppard. We find that the measured reflective ratios of the fabricated DBRs meet the calculated results obtained from Sheppard’s equation.</description><identifier>ISSN: 0217-9849</identifier><identifier>EISSN: 1793-6640</identifier><identifier>DOI: 10.1142/S0217984921400017</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Bilayers ; Bragg reflectors ; Electron beams ; Field emission microscopy ; Glass substrates ; Ion beams ; Magnesium fluorides ; Mathematical analysis ; Monolayers ; Multilayers ; Niobium oxides ; Optical properties ; Refractivity ; Thickness</subject><ispartof>Modern physics letters. B, Condensed matter physics, statistical physics, applied physics, 2021-10, Vol.35 (29)</ispartof><rights>2021, The Author(s)</rights><rights>2021. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is used for non-commercial purposes.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0217984921400017$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27474,27901,27902,55544</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0217984921400017$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Du, Yong</creatorcontrib><creatorcontrib>Chen, Bo-Syuan</creatorcontrib><creatorcontrib>Lin, Jing-Jenn</creatorcontrib><creatorcontrib>Tseng, Hsien-Wei</creatorcontrib><creatorcontrib>Wu, You-Lin</creatorcontrib><creatorcontrib>Yang, Cheng-Fu</creatorcontrib><title>Fabrication of 500 nm distributed Bragg reflector using Nb2O5-MgF2 multi-layer films</title><title>Modern physics letters. B, Condensed matter physics, statistical physics, applied physics</title><description>At first, we use an n &amp; K analyzer to measure the optical properties (including refractive index n and extinction coefficient k ) of MgF2 and Nb2O5 single-layer films, in a wavelength range of 200–1700 nm for MgF2 film and in a wavelength range of 350–1500 nm for Nb2O5 film. After the refractive indexes of MgF2 and Nb2O5 single-layer films are measured, we use the measured results to calculate the needed thicknesses of the quarter-wave (1/4 wavelength) MgF2 and Nb2O5 films for the designed green-light (500 nm) distributed Bragg reflectors (DBRs). After that, an E-beam is used to deposit the MgF2-Nb2O5 bilayer films (called as one period) with different periods (two, four, and six periods are deposited in this study) on glass substrates to fabricate the DBRs with a central wavelength of 500 nm. Then we use the field emission scanning electron microscopy (FESEM) to observe the surface images of Nb2O5 films on the different periods of MgF2-Nb2O5 bilayer films. The important novelty is that we use a Focused Ion Beam (FIB) to prepare the samples for the observations of the cross-sections of MgF2-Nb2O5 bilayer films, and those results can be sued to confirm the thicknesses of the bilayer films with different periods. We also compare the reflective ratio of the fabricated DBRs at the designed central wavelength with those calculated values by using the equation investigated by Sheppard. We find that the measured reflective ratios of the fabricated DBRs meet the calculated results obtained from Sheppard’s equation.</description><subject>Bilayers</subject><subject>Bragg reflectors</subject><subject>Electron beams</subject><subject>Field emission microscopy</subject><subject>Glass substrates</subject><subject>Ion beams</subject><subject>Magnesium fluorides</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>Niobium oxides</subject><subject>Optical properties</subject><subject>Refractivity</subject><subject>Thickness</subject><issn>0217-9849</issn><issn>1793-6640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkE1LxDAYhIMouK7-AG8Bz9X0TdIkR12sCqt7cD2XNE1Kln6sSYrsv7fLevM0MPMwA4PQbU7u85zBwyeBXCjJFOSMEJKLM7SYDZoVBSPnaHGMs2N-ia5i3M0EEzxfoG2p6-CNTn4c8OgwJwQPPW58TMHXU7INfgq6bXGwrrMmjQFP0Q8t_qhhw7P3tgTcT13yWacPNmDnuz5eowunu2hv_nSJvsrn7eo1W29e3laP62wPhRCZYEYKThgAE5Y6pSQvtCLAAQQVUppGGmeb2nIolKxBu0YrKSjXWhBOJF2iu1PvPozfk42p2o1TGObJCrhQQGG-Y6bIifoZQ9dE4-2QvPOm2gff63Co_n1HfwFr6V-0</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Du, Yong</creator><creator>Chen, Bo-Syuan</creator><creator>Lin, Jing-Jenn</creator><creator>Tseng, Hsien-Wei</creator><creator>Wu, You-Lin</creator><creator>Yang, Cheng-Fu</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope></search><sort><creationdate>20211020</creationdate><title>Fabrication of 500 nm distributed Bragg reflector using Nb2O5-MgF2 multi-layer films</title><author>Du, Yong ; Chen, Bo-Syuan ; Lin, Jing-Jenn ; Tseng, Hsien-Wei ; Wu, You-Lin ; Yang, Cheng-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2677-74c875042247e3f99856a90252273788cd8cfedbe52698b2afda98735aa705083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bilayers</topic><topic>Bragg reflectors</topic><topic>Electron beams</topic><topic>Field emission microscopy</topic><topic>Glass substrates</topic><topic>Ion beams</topic><topic>Magnesium fluorides</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>Niobium oxides</topic><topic>Optical properties</topic><topic>Refractivity</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yong</creatorcontrib><creatorcontrib>Chen, Bo-Syuan</creatorcontrib><creatorcontrib>Lin, Jing-Jenn</creatorcontrib><creatorcontrib>Tseng, Hsien-Wei</creatorcontrib><creatorcontrib>Wu, You-Lin</creatorcontrib><creatorcontrib>Yang, Cheng-Fu</creatorcontrib><collection>World Scientific Open</collection><jtitle>Modern physics letters. B, Condensed matter physics, statistical physics, applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Yong</au><au>Chen, Bo-Syuan</au><au>Lin, Jing-Jenn</au><au>Tseng, Hsien-Wei</au><au>Wu, You-Lin</au><au>Yang, Cheng-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of 500 nm distributed Bragg reflector using Nb2O5-MgF2 multi-layer films</atitle><jtitle>Modern physics letters. B, Condensed matter physics, statistical physics, applied physics</jtitle><date>2021-10-20</date><risdate>2021</risdate><volume>35</volume><issue>29</issue><issn>0217-9849</issn><eissn>1793-6640</eissn><abstract>At first, we use an n &amp; K analyzer to measure the optical properties (including refractive index n and extinction coefficient k ) of MgF2 and Nb2O5 single-layer films, in a wavelength range of 200–1700 nm for MgF2 film and in a wavelength range of 350–1500 nm for Nb2O5 film. After the refractive indexes of MgF2 and Nb2O5 single-layer films are measured, we use the measured results to calculate the needed thicknesses of the quarter-wave (1/4 wavelength) MgF2 and Nb2O5 films for the designed green-light (500 nm) distributed Bragg reflectors (DBRs). After that, an E-beam is used to deposit the MgF2-Nb2O5 bilayer films (called as one period) with different periods (two, four, and six periods are deposited in this study) on glass substrates to fabricate the DBRs with a central wavelength of 500 nm. Then we use the field emission scanning electron microscopy (FESEM) to observe the surface images of Nb2O5 films on the different periods of MgF2-Nb2O5 bilayer films. The important novelty is that we use a Focused Ion Beam (FIB) to prepare the samples for the observations of the cross-sections of MgF2-Nb2O5 bilayer films, and those results can be sued to confirm the thicknesses of the bilayer films with different periods. We also compare the reflective ratio of the fabricated DBRs at the designed central wavelength with those calculated values by using the equation investigated by Sheppard. We find that the measured reflective ratios of the fabricated DBRs meet the calculated results obtained from Sheppard’s equation.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0217984921400017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0217-9849
ispartof Modern physics letters. B, Condensed matter physics, statistical physics, applied physics, 2021-10, Vol.35 (29)
issn 0217-9849
1793-6640
language eng
recordid cdi_worldscientific_primary_S0217984921400017
source World Scientific Open
subjects Bilayers
Bragg reflectors
Electron beams
Field emission microscopy
Glass substrates
Ion beams
Magnesium fluorides
Mathematical analysis
Monolayers
Multilayers
Niobium oxides
Optical properties
Refractivity
Thickness
title Fabrication of 500 nm distributed Bragg reflector using Nb2O5-MgF2 multi-layer films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20500%20nm%20distributed%20Bragg%20reflector%20using%20Nb2O5-MgF2%20multi-layer%20films&rft.jtitle=Modern%20physics%20letters.%20B,%20Condensed%20matter%20physics,%20statistical%20physics,%20applied%20physics&rft.au=Du,%20Yong&rft.date=2021-10-20&rft.volume=35&rft.issue=29&rft.issn=0217-9849&rft.eissn=1793-6640&rft_id=info:doi/10.1142/S0217984921400017&rft_dat=%3Cproquest_ADCHV%3E2579232921%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579232921&rft_id=info:pmid/&rfr_iscdi=true