Effects of Emotional Olfactory Stimuli on Modulating Angry Driving Based on an EEG Connectivity Study
Effectively regulating anger driving has become critical in ensuring road safety. The existing research lacks a feasible exploration of anger-driving regulation. This paper delves into the effect and neural mechanisms of emotional olfactory stimuli (EOS) on regulating anger driving based on EEG. Fir...
Gespeichert in:
Veröffentlicht in: | International journal of neural systems 2024-11, Vol.34 (11), p.2450058 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effectively regulating anger driving has become critical in ensuring road safety. The existing research lacks a feasible exploration of anger-driving regulation. This paper delves into the effect and neural mechanisms of emotional olfactory stimuli (EOS) on regulating anger driving based on EEG. First, this study designed an angry driving regulation experiment based on EOS to record EEG signals. Second, brain activation patterns under various EOS conditions are explored by analyzing functional brain networks (FBNs). Additionally, the paper analyzes dynamic alterations in anger-related characteristics to explore the intensity and persistence of regulating anger driving under different EOS. Finally, the paper studies the frequency energy of EEG changes under EOS through time–frequency analysis. The results indicate that EOS can effectively regulate a driver’s anger emotions, especially with the banana odor showing superior effects. Under banana odor stimulus, synchronization between the parietal and temporal lobes significantly decreased. Notably, the regulatory effect of banana odor is optimal and exhibits sustained efficacy. The regulatory effect of banana odor on anger emotions is persistent. Furthermore, the impact of banana odor significantly reduces the distribution of high-energy activation states in the parietal lobe region. Our findings provide new insights into the dynamic characterization of functional connectivity during anger-driving regulation and demonstrate the potential of using EOS as a reliable tool for regulating angry driving. |
---|---|
ISSN: | 0129-0657 1793-6462 |
DOI: | 10.1142/S0129065724500588 |