Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks

Large-scale benchmark datasets are crucial in advancing research within the computer science communities. They enable the development of more sophisticated AI models and serve as “golden” benchmarks for evaluating their performance. Thus, ensuring the quality of these datasets is of utmost importanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of neural systems 2024-03, Vol.34 (3), p.2450009
Hauptverfasser: Zhao, Ruibin, Xie, Zhiwei, Zhuang, Yipeng, L. H. Yu, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale benchmark datasets are crucial in advancing research within the computer science communities. They enable the development of more sophisticated AI models and serve as “golden” benchmarks for evaluating their performance. Thus, ensuring the quality of these datasets is of utmost importance for academic research and the progress of AI systems. For the emerging vision-language tasks, some datasets have been created and frequently used, such as Flickr30k, COCO, and NoCaps, which typically contain a large number of images paired with their ground-truth textual descriptions. In this paper, an automatic method is proposed to assess the quality of large-scale benchmark datasets designed for vision-language tasks. In particular, a new cross-modal matching model is developed, which is capable of automatically scoring the textual descriptions of visual images. Subsequently, this model is employed to evaluate the quality of vision-language datasets by automatically assigning a score to each ‘ground-truth’ description for every image picture. With a good agreement between manual and automated scoring results on the datasets, our findings reveal significant disparities in the quality of the ground-truth descriptions included in the benchmark datasets. Even more surprising, it is evident that a small portion of the descriptions are unsuitable for serving as reliable ground-truth references. These discoveries emphasize the need for careful utilization of these publicly accessible benchmark databases.
ISSN:0129-0657
1793-6462
DOI:10.1142/S0129065724500096