Eye State Detection Using Frequency Features from 1 or 2-Channel EEG

Brain–computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of neural systems 2023-12, Vol.33 (12)
Hauptverfasser: Laport, Francisco, Dapena, Adriana, Castro, Paula M., Iglesias, Daniel I., Vazquez-Araujo, Francisco J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title International journal of neural systems
container_volume 33
creator Laport, Francisco
Dapena, Adriana
Castro, Paula M.
Iglesias, Daniel I.
Vazquez-Araujo, Francisco J.
description Brain–computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.
doi_str_mv 10.1142/S0129065723500624
format Article
fullrecord <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0129065723500624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3165619523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3424-33847badbd5b627a1072a6877003a5398e4f3c88e72870ba3c9082145a71fa313</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsfwFvA8-p7-b9HabdVKHioPS_ZNKtb2k1NUqTf3i0VL57mMPN7bxhC7hEeEQV7WgKyEpTUjEsAxcQFGaEueaGEYpdkdLKLk39NblLaAKDQwozItDp6usw2ezr12bvchZ6uUtd_0Fn0XwffuyOdeZsP0SfaxrCjSEOkrJh82r73W1pV81ty1dpt8ne_OiarWfU-eSkWb_PXyfOicFwwUXBuhG7sulnLRjFtETSzymgNwK3kpfGi5c4Yr5nR0FjuSjAMhbQaW8uRj8nD-e4-hqFayvUmHGI_vKw5KqmwlIwPKTynXAwpRd_W-9jtbDzWCPVprPrfWAMDZ-Y7xO06uc73uWs794f-R34A6Ppn9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3165619523</pqid></control><display><type>article</type><title>Eye State Detection Using Frequency Features from 1 or 2-Channel EEG</title><source>World Scientific Open</source><creator>Laport, Francisco ; Dapena, Adriana ; Castro, Paula M. ; Iglesias, Daniel I. ; Vazquez-Araujo, Francisco J.</creator><creatorcontrib>Laport, Francisco ; Dapena, Adriana ; Castro, Paula M. ; Iglesias, Daniel I. ; Vazquez-Araujo, Francisco J.</creatorcontrib><description>Brain–computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.</description><identifier>ISSN: 0129-0657</identifier><identifier>EISSN: 1793-6462</identifier><identifier>DOI: 10.1142/S0129065723500624</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Channels ; Cost effectiveness ; Decision trees ; Discriminant analysis ; Electroencephalography ; Feature extraction ; Fourier transforms ; Hardware ; Human-computer interface ; Robustness ; Support vector machines</subject><ispartof>International journal of neural systems, 2023-12, Vol.33 (12)</ispartof><rights>2023, The Author(s)</rights><rights>2023. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3424-33847badbd5b627a1072a6877003a5398e4f3c88e72870ba3c9082145a71fa313</cites><orcidid>0000-0001-7362-6854 ; 0000-0002-0521-3465 ; 0000-0002-6543-8236 ; 0000-0001-5830-681X ; 0000-0002-9964-5727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0129065723500624$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27474,27901,27902,55544</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0129065723500624$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Laport, Francisco</creatorcontrib><creatorcontrib>Dapena, Adriana</creatorcontrib><creatorcontrib>Castro, Paula M.</creatorcontrib><creatorcontrib>Iglesias, Daniel I.</creatorcontrib><creatorcontrib>Vazquez-Araujo, Francisco J.</creatorcontrib><title>Eye State Detection Using Frequency Features from 1 or 2-Channel EEG</title><title>International journal of neural systems</title><description>Brain–computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Cost effectiveness</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Hardware</subject><subject>Human-computer interface</subject><subject>Robustness</subject><subject>Support vector machines</subject><issn>0129-0657</issn><issn>1793-6462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkE9LAzEUxIMoWKsfwFvA8-p7-b9HabdVKHioPS_ZNKtb2k1NUqTf3i0VL57mMPN7bxhC7hEeEQV7WgKyEpTUjEsAxcQFGaEueaGEYpdkdLKLk39NblLaAKDQwozItDp6usw2ezr12bvchZ6uUtd_0Fn0XwffuyOdeZsP0SfaxrCjSEOkrJh82r73W1pV81ty1dpt8ne_OiarWfU-eSkWb_PXyfOicFwwUXBuhG7sulnLRjFtETSzymgNwK3kpfGi5c4Yr5nR0FjuSjAMhbQaW8uRj8nD-e4-hqFayvUmHGI_vKw5KqmwlIwPKTynXAwpRd_W-9jtbDzWCPVprPrfWAMDZ-Y7xO06uc73uWs794f-R34A6Ppn9g</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Laport, Francisco</creator><creator>Dapena, Adriana</creator><creator>Castro, Paula M.</creator><creator>Iglesias, Daniel I.</creator><creator>Vazquez-Araujo, Francisco J.</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7362-6854</orcidid><orcidid>https://orcid.org/0000-0002-0521-3465</orcidid><orcidid>https://orcid.org/0000-0002-6543-8236</orcidid><orcidid>https://orcid.org/0000-0001-5830-681X</orcidid><orcidid>https://orcid.org/0000-0002-9964-5727</orcidid></search><sort><creationdate>202312</creationdate><title>Eye State Detection Using Frequency Features from 1 or 2-Channel EEG</title><author>Laport, Francisco ; Dapena, Adriana ; Castro, Paula M. ; Iglesias, Daniel I. ; Vazquez-Araujo, Francisco J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3424-33847badbd5b627a1072a6877003a5398e4f3c88e72870ba3c9082145a71fa313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Cost effectiveness</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Hardware</topic><topic>Human-computer interface</topic><topic>Robustness</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laport, Francisco</creatorcontrib><creatorcontrib>Dapena, Adriana</creatorcontrib><creatorcontrib>Castro, Paula M.</creatorcontrib><creatorcontrib>Iglesias, Daniel I.</creatorcontrib><creatorcontrib>Vazquez-Araujo, Francisco J.</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><jtitle>International journal of neural systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laport, Francisco</au><au>Dapena, Adriana</au><au>Castro, Paula M.</au><au>Iglesias, Daniel I.</au><au>Vazquez-Araujo, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eye State Detection Using Frequency Features from 1 or 2-Channel EEG</atitle><jtitle>International journal of neural systems</jtitle><date>2023-12</date><risdate>2023</risdate><volume>33</volume><issue>12</issue><issn>0129-0657</issn><eissn>1793-6462</eissn><abstract>Brain–computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0129065723500624</doi><orcidid>https://orcid.org/0000-0001-7362-6854</orcidid><orcidid>https://orcid.org/0000-0002-0521-3465</orcidid><orcidid>https://orcid.org/0000-0002-6543-8236</orcidid><orcidid>https://orcid.org/0000-0001-5830-681X</orcidid><orcidid>https://orcid.org/0000-0002-9964-5727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0129-0657
ispartof International journal of neural systems, 2023-12, Vol.33 (12)
issn 0129-0657
1793-6462
language eng
recordid cdi_worldscientific_primary_S0129065723500624
source World Scientific Open
subjects Algorithms
Channels
Cost effectiveness
Decision trees
Discriminant analysis
Electroencephalography
Feature extraction
Fourier transforms
Hardware
Human-computer interface
Robustness
Support vector machines
title Eye State Detection Using Frequency Features from 1 or 2-Channel EEG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eye%20State%20Detection%20Using%20Frequency%20Features%20from%201%20or%202-Channel%20EEG&rft.jtitle=International%20journal%20of%20neural%20systems&rft.au=Laport,%20Francisco&rft.date=2023-12&rft.volume=33&rft.issue=12&rft.issn=0129-0657&rft.eissn=1793-6462&rft_id=info:doi/10.1142/S0129065723500624&rft_dat=%3Cproquest_ADCHV%3E3165619523%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3165619523&rft_id=info:pmid/&rfr_iscdi=true