Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data

Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of neural systems 2021-04, Vol.31 (4), p.2150009
Hauptverfasser: Graña, Manuel, Silva, Moises
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2150009
container_title International journal of neural systems
container_volume 31
creator Graña, Manuel
Silva, Moises
description Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.
doi_str_mv 10.1142/S012906572150009X
format Article
fullrecord <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S012906572150009X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413X-7492f8c88ae190b720ece27ff5d0099b241eb5fa603c917294b476007824eb643</originalsourceid><addsrcrecordid>eNplkNFPwjAQxhujEUT_AF9ME5-n165b10eCoiQYSdSEt6UrnZSwFttNw3_vJsgLT5fv7ndf7j6ErgncEcLo_RsQKiBNOCUJAIj5CeoTLuIoZSk9Rf1uHHXzHroIYQVAGGfZOerFMeM0YVkfFZNqI1WNXYlfpFoaq_FUS2-N_cQzs9HrrjNaOqN0wMbiYVObUOGZ1wujauMsHntX4XFj_5Rc45GzVrfi29Rb_CBreYnOSrkO-mpfB-hj_Pg-eo6mr0-T0XAaKUbiecSZoGWmskxqIqDgFLTSlJdlsmhfEwVlRBdJKVOIlSCcClYwngLwjDJdpCweoNud78a7r0aHOl-5xrcnhZwmkEAmgMYtRXaU8i4Er8t8400l_TYnkHep5keptjs3e-emqPTisPEfYwvADvhxfr0Iymhbm9KoA3ns-Qstp4DD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089023</pqid></control><display><type>article</type><title>Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data</title><source>World Scientific Open</source><creator>Graña, Manuel ; Silva, Moises</creator><creatorcontrib>Graña, Manuel ; Silva, Moises</creatorcontrib><description>Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.</description><identifier>ISSN: 0129-0657</identifier><identifier>EISSN: 1793-6462</identifier><identifier>DOI: 10.1142/S012906572150009X</identifier><identifier>PMID: 33472548</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Autism ; Biomarkers ; Brain ; Feature extraction ; Impact analysis ; Machine learning ; Magnetic resonance imaging ; Pipelines ; Research Article</subject><ispartof>International journal of neural systems, 2021-04, Vol.31 (4), p.2150009</ispartof><rights>2021, The Author(s)</rights><rights>2021. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413X-7492f8c88ae190b720ece27ff5d0099b241eb5fa603c917294b476007824eb643</citedby><cites>FETCH-LOGICAL-c413X-7492f8c88ae190b720ece27ff5d0099b241eb5fa603c917294b476007824eb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S012906572150009X$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27474,27901,27902,55544</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S012906572150009X$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33472548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graña, Manuel</creatorcontrib><creatorcontrib>Silva, Moises</creatorcontrib><title>Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data</title><title>International journal of neural systems</title><addtitle>Int J Neural Syst</addtitle><description>Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.</description><subject>Algorithms</subject><subject>Autism</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Feature extraction</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Pipelines</subject><subject>Research Article</subject><issn>0129-0657</issn><issn>1793-6462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkNFPwjAQxhujEUT_AF9ME5-n165b10eCoiQYSdSEt6UrnZSwFttNw3_vJsgLT5fv7ndf7j6ErgncEcLo_RsQKiBNOCUJAIj5CeoTLuIoZSk9Rf1uHHXzHroIYQVAGGfZOerFMeM0YVkfFZNqI1WNXYlfpFoaq_FUS2-N_cQzs9HrrjNaOqN0wMbiYVObUOGZ1wujauMsHntX4XFj_5Rc45GzVrfi29Rb_CBreYnOSrkO-mpfB-hj_Pg-eo6mr0-T0XAaKUbiecSZoGWmskxqIqDgFLTSlJdlsmhfEwVlRBdJKVOIlSCcClYwngLwjDJdpCweoNud78a7r0aHOl-5xrcnhZwmkEAmgMYtRXaU8i4Er8t8400l_TYnkHep5keptjs3e-emqPTisPEfYwvADvhxfr0Iymhbm9KoA3ns-Qstp4DD</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Graña, Manuel</creator><creator>Silva, Moises</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202104</creationdate><title>Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data</title><author>Graña, Manuel ; Silva, Moises</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413X-7492f8c88ae190b720ece27ff5d0099b241eb5fa603c917294b476007824eb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autism</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Feature extraction</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Pipelines</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graña, Manuel</creatorcontrib><creatorcontrib>Silva, Moises</creatorcontrib><collection>World Scientific Open</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>International journal of neural systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Graña, Manuel</au><au>Silva, Moises</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data</atitle><jtitle>International journal of neural systems</jtitle><addtitle>Int J Neural Syst</addtitle><date>2021-04</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>2150009</spage><pages>2150009-</pages><issn>0129-0657</issn><eissn>1793-6462</eissn><abstract>Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><pmid>33472548</pmid><doi>10.1142/S012906572150009X</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0129-0657
ispartof International journal of neural systems, 2021-04, Vol.31 (4), p.2150009
issn 0129-0657
1793-6462
language eng
recordid cdi_worldscientific_primary_S012906572150009X
source World Scientific Open
subjects Algorithms
Autism
Biomarkers
Brain
Feature extraction
Impact analysis
Machine learning
Magnetic resonance imaging
Pipelines
Research Article
title Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Machine%20Learning%20Pipeline%20Choices%20in%20Autism%20Prediction%20From%20Functional%20Connectivity%20Data&rft.jtitle=International%20journal%20of%20neural%20systems&rft.au=Gra%C3%B1a,%20Manuel&rft.date=2021-04&rft.volume=31&rft.issue=4&rft.spage=2150009&rft.pages=2150009-&rft.issn=0129-0657&rft.eissn=1793-6462&rft_id=info:doi/10.1142/S012906572150009X&rft_dat=%3Cproquest_ADCHV%3E2505089023%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505089023&rft_id=info:pmid/33472548&rfr_iscdi=true