Perceptual Generalization and Context in a Network Memory Inspired Long-Term Memory for Artificial Cognition
In the framework of open-ended learning cognitive architectures for robots, this paper deals with the design of a Long-Term Memory (LTM) structure that can accommodate the progressive acquisition of experience-based decision capabilities, or what different authors call “automation” of what is learnt...
Gespeichert in:
Veröffentlicht in: | International journal of neural systems 2019-08, Vol.29 (6), p.1850053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the framework of open-ended learning cognitive architectures for robots, this paper deals with the design of a Long-Term Memory (LTM) structure that can accommodate the progressive acquisition of experience-based decision capabilities, or what different authors call “automation” of what is learnt, as a complementary system to more common prospective functions. The LTM proposed here provides for a relational storage of knowledge nuggets given the form of artificial neural networks (ANNs) that is representative of the contexts in which they are relevant in a configural associative structure. It also addresses the problem of continuous perceptual spaces and the task- and context-related generalization or categorization of perceptions in an autonomous manner within the embodied sensorimotor apparatus of the robot. These issues are analyzed and a solution is proposed through the introduction of two new types of knowledge nuggets: P-nodes representing perceptual classes and C-nodes representing contexts. The approach is studied and its performance evaluated through its implementation and application to a real robotic experiment. |
---|---|
ISSN: | 0129-0657 1793-6462 |
DOI: | 10.1142/S0129065718500533 |