Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala

Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pain (Amsterdam) 2020-01, Vol.161 (1), p.166-176
Hauptverfasser: Li, Jun-Nan, Sheets, Patrick L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 166
container_title Pain (Amsterdam)
container_volume 161
creator Li, Jun-Nan
Sheets, Patrick L.
description Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.
doi_str_mv 10.1097/j.pain.0000000000001691
format Article
fullrecord <record><control><sourceid>proquest_wolte</sourceid><recordid>TN_cdi_wolterskluwer_health_00006396-202001000-00018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283996247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</originalsourceid><addsrcrecordid>eNqNksGO0zAURSMEYjoDvwBeIqEUx06ceIOEKhiQRmIBrC3HeWldUjvYzgz5Hz6Ul2mpBlZkE8U5994n35dlLwu6Lqis3-zXo7ZuTR88hZDFo2xVNDXLhWD8cbainJY5l5W8yC5j3CPEGJNPswtelLWkQqyyX19GHaAjDsItEOv2U5hJZ_seArhk9TDMRA8JQiQI6jZos8NTcvDOx9npMVlD4KexSSePUuvGKUWSPBIDmGnQAR3iCMb2SDqYgncRMQyJyTqTSJzaAFu7HPuepB0Qg9EBQ_Rh3nZ60M-yJ70eIjw_va-ybx_ef918zG8-X3_avLvJTcWaJte8rHpT0J7zsuYtFRSqtupYAz1UoqKa1W0huehKZkreCaBd09amripRlAIYv8reHn3HqT1AdxpDjcEedJiV11b9_cfZndr6WyVkiXdbo8Grk0HwPyaISR1sNDAM2oGfomKs4VIKVi5ofURN8DEG6M8xBVVLx2qvlo7Vvx2j8sXDKc-6P6Ui8PoI3EHr-2gsOANnDG2qGhdBNIthg3Tz__Rm6Rmr2vjJJZSWJ6m_X5Hvw3QHQe0AN2Z3P7jgUuSMMtTiV35M_A3wRdpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283996247</pqid></control><display><type>article</type><title>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Li, Jun-Nan ; Sheets, Patrick L.</creator><creatorcontrib>Li, Jun-Nan ; Sheets, Patrick L.</creatorcontrib><description>Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.</description><identifier>ISSN: 0304-3959</identifier><identifier>ISSN: 1872-6623</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1097/j.pain.0000000000001691</identifier><identifier>PMID: 31479066</identifier><language>eng</language><publisher>PHILADELPHIA: Wolters Kluwer</publisher><subject>Anesthesiology ; Animals ; Central Amygdaloid Nucleus - metabolism ; Central Amygdaloid Nucleus - physiopathology ; Clinical Neurology ; Corticotropin-Releasing Hormone - metabolism ; Life Sciences &amp; Biomedicine ; Male ; Mice ; Mice, Transgenic ; Neural Pathways - metabolism ; Neural Pathways - physiopathology ; Neuralgia - metabolism ; Neuralgia - physiopathology ; Neurons - metabolism ; Neurons - physiology ; Neurosciences ; Neurosciences &amp; Neurology ; Parabrachial Nucleus - metabolism ; Parabrachial Nucleus - physiopathology ; Patch-Clamp Techniques ; Peripheral Nerve Injuries - metabolism ; Peripheral Nerve Injuries - physiopathology ; Research Paper ; Science &amp; Technology ; Somatostatin - metabolism</subject><ispartof>Pain (Amsterdam), 2020-01, Vol.161 (1), p.166-176</ispartof><rights>Wolters Kluwer</rights><rights>Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000570226800018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</citedby><cites>FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31479066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jun-Nan</creatorcontrib><creatorcontrib>Sheets, Patrick L.</creatorcontrib><title>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</title><title>Pain (Amsterdam)</title><addtitle>PAIN</addtitle><addtitle>Pain</addtitle><description>Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.</description><subject>Anesthesiology</subject><subject>Animals</subject><subject>Central Amygdaloid Nucleus - metabolism</subject><subject>Central Amygdaloid Nucleus - physiopathology</subject><subject>Clinical Neurology</subject><subject>Corticotropin-Releasing Hormone - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural Pathways - metabolism</subject><subject>Neural Pathways - physiopathology</subject><subject>Neuralgia - metabolism</subject><subject>Neuralgia - physiopathology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Parabrachial Nucleus - metabolism</subject><subject>Parabrachial Nucleus - physiopathology</subject><subject>Patch-Clamp Techniques</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral Nerve Injuries - physiopathology</subject><subject>Research Paper</subject><subject>Science &amp; Technology</subject><subject>Somatostatin - metabolism</subject><issn>0304-3959</issn><issn>1872-6623</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNksGO0zAURSMEYjoDvwBeIqEUx06ceIOEKhiQRmIBrC3HeWldUjvYzgz5Hz6Ul2mpBlZkE8U5994n35dlLwu6Lqis3-zXo7ZuTR88hZDFo2xVNDXLhWD8cbainJY5l5W8yC5j3CPEGJNPswtelLWkQqyyX19GHaAjDsItEOv2U5hJZ_seArhk9TDMRA8JQiQI6jZos8NTcvDOx9npMVlD4KexSSePUuvGKUWSPBIDmGnQAR3iCMb2SDqYgncRMQyJyTqTSJzaAFu7HPuepB0Qg9EBQ_Rh3nZ60M-yJ70eIjw_va-ybx_ef918zG8-X3_avLvJTcWaJte8rHpT0J7zsuYtFRSqtupYAz1UoqKa1W0huehKZkreCaBd09amripRlAIYv8reHn3HqT1AdxpDjcEedJiV11b9_cfZndr6WyVkiXdbo8Grk0HwPyaISR1sNDAM2oGfomKs4VIKVi5ofURN8DEG6M8xBVVLx2qvlo7Vvx2j8sXDKc-6P6Ui8PoI3EHr-2gsOANnDG2qGhdBNIthg3Tz__Rm6Rmr2vjJJZSWJ6m_X5Hvw3QHQe0AN2Z3P7jgUuSMMtTiV35M_A3wRdpU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Jun-Nan</creator><creator>Sheets, Patrick L.</creator><general>Wolters Kluwer</general><general>Lippincott Williams &amp; Wilkins</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</title><author>Li, Jun-Nan ; Sheets, Patrick L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anesthesiology</topic><topic>Animals</topic><topic>Central Amygdaloid Nucleus - metabolism</topic><topic>Central Amygdaloid Nucleus - physiopathology</topic><topic>Clinical Neurology</topic><topic>Corticotropin-Releasing Hormone - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural Pathways - metabolism</topic><topic>Neural Pathways - physiopathology</topic><topic>Neuralgia - metabolism</topic><topic>Neuralgia - physiopathology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Parabrachial Nucleus - metabolism</topic><topic>Parabrachial Nucleus - physiopathology</topic><topic>Patch-Clamp Techniques</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral Nerve Injuries - physiopathology</topic><topic>Research Paper</topic><topic>Science &amp; Technology</topic><topic>Somatostatin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jun-Nan</creatorcontrib><creatorcontrib>Sheets, Patrick L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jun-Nan</au><au>Sheets, Patrick L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</atitle><jtitle>Pain (Amsterdam)</jtitle><stitle>PAIN</stitle><addtitle>Pain</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>161</volume><issue>1</issue><spage>166</spage><epage>176</epage><pages>166-176</pages><issn>0304-3959</issn><issn>1872-6623</issn><eissn>1872-6623</eissn><abstract>Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.</abstract><cop>PHILADELPHIA</cop><pub>Wolters Kluwer</pub><pmid>31479066</pmid><doi>10.1097/j.pain.0000000000001691</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3959
ispartof Pain (Amsterdam), 2020-01, Vol.161 (1), p.166-176
issn 0304-3959
1872-6623
1872-6623
language eng
recordid cdi_wolterskluwer_health_00006396-202001000-00018
source MEDLINE; Journals@Ovid Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Anesthesiology
Animals
Central Amygdaloid Nucleus - metabolism
Central Amygdaloid Nucleus - physiopathology
Clinical Neurology
Corticotropin-Releasing Hormone - metabolism
Life Sciences & Biomedicine
Male
Mice
Mice, Transgenic
Neural Pathways - metabolism
Neural Pathways - physiopathology
Neuralgia - metabolism
Neuralgia - physiopathology
Neurons - metabolism
Neurons - physiology
Neurosciences
Neurosciences & Neurology
Parabrachial Nucleus - metabolism
Parabrachial Nucleus - physiopathology
Patch-Clamp Techniques
Peripheral Nerve Injuries - metabolism
Peripheral Nerve Injuries - physiopathology
Research Paper
Science & Technology
Somatostatin - metabolism
title Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wolte&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spared%20nerve%20injury%20differentially%20alters%20parabrachial%20monosynaptic%20excitatory%20inputs%20to%20molecularly%20specific%20neurons%20in%20distinct%20subregions%20of%20the%20central%20amygdala&rft.jtitle=Pain%20(Amsterdam)&rft.au=Li,%20Jun-Nan&rft.date=2020-01-01&rft.volume=161&rft.issue=1&rft.spage=166&rft.epage=176&rft.pages=166-176&rft.issn=0304-3959&rft.eissn=1872-6623&rft_id=info:doi/10.1097/j.pain.0000000000001691&rft_dat=%3Cproquest_wolte%3E2283996247%3C/proquest_wolte%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283996247&rft_id=info:pmid/31479066&rfr_iscdi=true