Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala
Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers....
Gespeichert in:
Veröffentlicht in: | Pain (Amsterdam) 2020-01, Vol.161 (1), p.166-176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 1 |
container_start_page | 166 |
container_title | Pain (Amsterdam) |
container_volume | 161 |
creator | Li, Jun-Nan Sheets, Patrick L. |
description | Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain. |
doi_str_mv | 10.1097/j.pain.0000000000001691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wolte</sourceid><recordid>TN_cdi_wolterskluwer_health_00006396-202001000-00018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283996247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</originalsourceid><addsrcrecordid>eNqNksGO0zAURSMEYjoDvwBeIqEUx06ceIOEKhiQRmIBrC3HeWldUjvYzgz5Hz6Ul2mpBlZkE8U5994n35dlLwu6Lqis3-zXo7ZuTR88hZDFo2xVNDXLhWD8cbainJY5l5W8yC5j3CPEGJNPswtelLWkQqyyX19GHaAjDsItEOv2U5hJZ_seArhk9TDMRA8JQiQI6jZos8NTcvDOx9npMVlD4KexSSePUuvGKUWSPBIDmGnQAR3iCMb2SDqYgncRMQyJyTqTSJzaAFu7HPuepB0Qg9EBQ_Rh3nZ60M-yJ70eIjw_va-ybx_ef918zG8-X3_avLvJTcWaJte8rHpT0J7zsuYtFRSqtupYAz1UoqKa1W0huehKZkreCaBd09amripRlAIYv8reHn3HqT1AdxpDjcEedJiV11b9_cfZndr6WyVkiXdbo8Grk0HwPyaISR1sNDAM2oGfomKs4VIKVi5ofURN8DEG6M8xBVVLx2qvlo7Vvx2j8sXDKc-6P6Ui8PoI3EHr-2gsOANnDG2qGhdBNIthg3Tz__Rm6Rmr2vjJJZSWJ6m_X5Hvw3QHQe0AN2Z3P7jgUuSMMtTiV35M_A3wRdpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283996247</pqid></control><display><type>article</type><title>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Li, Jun-Nan ; Sheets, Patrick L.</creator><creatorcontrib>Li, Jun-Nan ; Sheets, Patrick L.</creatorcontrib><description>Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.</description><identifier>ISSN: 0304-3959</identifier><identifier>ISSN: 1872-6623</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1097/j.pain.0000000000001691</identifier><identifier>PMID: 31479066</identifier><language>eng</language><publisher>PHILADELPHIA: Wolters Kluwer</publisher><subject>Anesthesiology ; Animals ; Central Amygdaloid Nucleus - metabolism ; Central Amygdaloid Nucleus - physiopathology ; Clinical Neurology ; Corticotropin-Releasing Hormone - metabolism ; Life Sciences & Biomedicine ; Male ; Mice ; Mice, Transgenic ; Neural Pathways - metabolism ; Neural Pathways - physiopathology ; Neuralgia - metabolism ; Neuralgia - physiopathology ; Neurons - metabolism ; Neurons - physiology ; Neurosciences ; Neurosciences & Neurology ; Parabrachial Nucleus - metabolism ; Parabrachial Nucleus - physiopathology ; Patch-Clamp Techniques ; Peripheral Nerve Injuries - metabolism ; Peripheral Nerve Injuries - physiopathology ; Research Paper ; Science & Technology ; Somatostatin - metabolism</subject><ispartof>Pain (Amsterdam), 2020-01, Vol.161 (1), p.166-176</ispartof><rights>Wolters Kluwer</rights><rights>Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000570226800018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</citedby><cites>FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31479066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jun-Nan</creatorcontrib><creatorcontrib>Sheets, Patrick L.</creatorcontrib><title>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</title><title>Pain (Amsterdam)</title><addtitle>PAIN</addtitle><addtitle>Pain</addtitle><description>Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.</description><subject>Anesthesiology</subject><subject>Animals</subject><subject>Central Amygdaloid Nucleus - metabolism</subject><subject>Central Amygdaloid Nucleus - physiopathology</subject><subject>Clinical Neurology</subject><subject>Corticotropin-Releasing Hormone - metabolism</subject><subject>Life Sciences & Biomedicine</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural Pathways - metabolism</subject><subject>Neural Pathways - physiopathology</subject><subject>Neuralgia - metabolism</subject><subject>Neuralgia - physiopathology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Parabrachial Nucleus - metabolism</subject><subject>Parabrachial Nucleus - physiopathology</subject><subject>Patch-Clamp Techniques</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral Nerve Injuries - physiopathology</subject><subject>Research Paper</subject><subject>Science & Technology</subject><subject>Somatostatin - metabolism</subject><issn>0304-3959</issn><issn>1872-6623</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNksGO0zAURSMEYjoDvwBeIqEUx06ceIOEKhiQRmIBrC3HeWldUjvYzgz5Hz6Ul2mpBlZkE8U5994n35dlLwu6Lqis3-zXo7ZuTR88hZDFo2xVNDXLhWD8cbainJY5l5W8yC5j3CPEGJNPswtelLWkQqyyX19GHaAjDsItEOv2U5hJZ_seArhk9TDMRA8JQiQI6jZos8NTcvDOx9npMVlD4KexSSePUuvGKUWSPBIDmGnQAR3iCMb2SDqYgncRMQyJyTqTSJzaAFu7HPuepB0Qg9EBQ_Rh3nZ60M-yJ70eIjw_va-ybx_ef918zG8-X3_avLvJTcWaJte8rHpT0J7zsuYtFRSqtupYAz1UoqKa1W0huehKZkreCaBd09amripRlAIYv8reHn3HqT1AdxpDjcEedJiV11b9_cfZndr6WyVkiXdbo8Grk0HwPyaISR1sNDAM2oGfomKs4VIKVi5ofURN8DEG6M8xBVVLx2qvlo7Vvx2j8sXDKc-6P6Ui8PoI3EHr-2gsOANnDG2qGhdBNIthg3Tz__Rm6Rmr2vjJJZSWJ6m_X5Hvw3QHQe0AN2Z3P7jgUuSMMtTiV35M_A3wRdpU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Jun-Nan</creator><creator>Sheets, Patrick L.</creator><general>Wolters Kluwer</general><general>Lippincott Williams & Wilkins</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</title><author>Li, Jun-Nan ; Sheets, Patrick L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5288-a345fc10f33473b060e5b5d28efe5650a27b1936d42c43d6e0d8b7c7556146e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anesthesiology</topic><topic>Animals</topic><topic>Central Amygdaloid Nucleus - metabolism</topic><topic>Central Amygdaloid Nucleus - physiopathology</topic><topic>Clinical Neurology</topic><topic>Corticotropin-Releasing Hormone - metabolism</topic><topic>Life Sciences & Biomedicine</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural Pathways - metabolism</topic><topic>Neural Pathways - physiopathology</topic><topic>Neuralgia - metabolism</topic><topic>Neuralgia - physiopathology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Parabrachial Nucleus - metabolism</topic><topic>Parabrachial Nucleus - physiopathology</topic><topic>Patch-Clamp Techniques</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral Nerve Injuries - physiopathology</topic><topic>Research Paper</topic><topic>Science & Technology</topic><topic>Somatostatin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jun-Nan</creatorcontrib><creatorcontrib>Sheets, Patrick L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jun-Nan</au><au>Sheets, Patrick L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala</atitle><jtitle>Pain (Amsterdam)</jtitle><stitle>PAIN</stitle><addtitle>Pain</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>161</volume><issue>1</issue><spage>166</spage><epage>176</epage><pages>166-176</pages><issn>0304-3959</issn><issn>1872-6623</issn><eissn>1872-6623</eissn><abstract>Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.</abstract><cop>PHILADELPHIA</cop><pub>Wolters Kluwer</pub><pmid>31479066</pmid><doi>10.1097/j.pain.0000000000001691</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3959 |
ispartof | Pain (Amsterdam), 2020-01, Vol.161 (1), p.166-176 |
issn | 0304-3959 1872-6623 1872-6623 |
language | eng |
recordid | cdi_wolterskluwer_health_00006396-202001000-00018 |
source | MEDLINE; Journals@Ovid Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Anesthesiology Animals Central Amygdaloid Nucleus - metabolism Central Amygdaloid Nucleus - physiopathology Clinical Neurology Corticotropin-Releasing Hormone - metabolism Life Sciences & Biomedicine Male Mice Mice, Transgenic Neural Pathways - metabolism Neural Pathways - physiopathology Neuralgia - metabolism Neuralgia - physiopathology Neurons - metabolism Neurons - physiology Neurosciences Neurosciences & Neurology Parabrachial Nucleus - metabolism Parabrachial Nucleus - physiopathology Patch-Clamp Techniques Peripheral Nerve Injuries - metabolism Peripheral Nerve Injuries - physiopathology Research Paper Science & Technology Somatostatin - metabolism |
title | Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wolte&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spared%20nerve%20injury%20differentially%20alters%20parabrachial%20monosynaptic%20excitatory%20inputs%20to%20molecularly%20specific%20neurons%20in%20distinct%20subregions%20of%20the%20central%20amygdala&rft.jtitle=Pain%20(Amsterdam)&rft.au=Li,%20Jun-Nan&rft.date=2020-01-01&rft.volume=161&rft.issue=1&rft.spage=166&rft.epage=176&rft.pages=166-176&rft.issn=0304-3959&rft.eissn=1872-6623&rft_id=info:doi/10.1097/j.pain.0000000000001691&rft_dat=%3Cproquest_wolte%3E2283996247%3C/proquest_wolte%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283996247&rft_id=info:pmid/31479066&rfr_iscdi=true |