Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System
IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A16599-A16599 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A16599 |
---|---|
container_issue | Suppl_1 Suppl 1 |
container_start_page | A16599 |
container_title | Circulation (New York, N.Y.) |
container_volume | 140 |
creator | Sheth, Samip Andersen, Lars Ajufo, Ezim Baer, Amanda Isenberg, Matt Andrea, Berrido Oyerinde, Esther Lynch, Marita Marjorie, Risman Wells, Brian Borovskiy, Yuliya Hossain, Erik Estrella, Lisa testa, heidi Horst, Michael Forney, Cathleen Martin, Barbara Forsyth, Corey Howard, William Staszak, David Zuzick, Dave Williamson, Latoya Helm, Benjamin Kendyl, Norton Kevin, Jaglinski Marcogardoqui, Guillermo Marianne, Stef Gidding, Samuel S Cuchel, Marina Jacoby, Douglas Chen, Jinbo Wilemon, Katherine A Myers, Kelly D Andersen, Rolf Rader, Daniel J |
description | IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value |
doi_str_mv | 10.1161/circ.140.suppl_1.16599 |
format | Article |
fullrecord | <record><control><sourceid>wolterskluwer</sourceid><recordid>TN_cdi_wolterskluwer_health_00003017-201911191-03812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>00003017-201911191-03812</sourcerecordid><originalsourceid>FETCH-wolterskluwer_health_00003017-201911191-038123</originalsourceid><addsrcrecordid>eNqdj1tOwzAQRS0EEuWxBTQLaIKdR0v6V0Gj8AFINMBnZJxpM9SNK9tt1ZWxPawKsQA-RlejO-dIw9iN4LEQI3GryKpYZDx2281GNyIWo7woTthA5EkWZXlanLIB57yIxmmSnLML577COkrH-YB9Tz-dt1J5OFITeJeaWunJ9PCygFLL5RAeW-w9LQ5DeEa_N3Y1hAfUtEM7gZL6FsoK3hz1S6g7hJlG5a3pScETtqSkhldUxrZQmz8VlHJNmkJXHTZoVWc0Oo82xJokfJDvqIcpzINVI1Qote-UtAjzQ7hbX7GzhdQOr3_zkmXlrL6vor3RQeNWertH23RHrgnv8pSLcZRwUQgRJuLpnUjSf2I_J2tzSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</title><source>EZB Electronic Journals Library</source><source>American Heart Association</source><source>Journals@Ovid Complete</source><creator>Sheth, Samip ; Andersen, Lars ; Ajufo, Ezim ; Baer, Amanda ; Isenberg, Matt ; Andrea, Berrido ; Oyerinde, Esther ; Lynch, Marita ; Marjorie, Risman ; Wells, Brian ; Borovskiy, Yuliya ; Hossain, Erik ; Estrella, Lisa ; testa, heidi ; Horst, Michael ; Forney, Cathleen ; Martin, Barbara ; Forsyth, Corey ; Howard, William ; Staszak, David ; Zuzick, Dave ; Williamson, Latoya ; Helm, Benjamin ; Kendyl, Norton ; Kevin, Jaglinski ; Marcogardoqui, Guillermo ; Marianne, Stef ; Gidding, Samuel S ; Cuchel, Marina ; Jacoby, Douglas ; Chen, Jinbo ; Wilemon, Katherine A ; Myers, Kelly D ; Andersen, Rolf ; Rader, Daniel J</creator><creatorcontrib>Sheth, Samip ; Andersen, Lars ; Ajufo, Ezim ; Baer, Amanda ; Isenberg, Matt ; Andrea, Berrido ; Oyerinde, Esther ; Lynch, Marita ; Marjorie, Risman ; Wells, Brian ; Borovskiy, Yuliya ; Hossain, Erik ; Estrella, Lisa ; testa, heidi ; Horst, Michael ; Forney, Cathleen ; Martin, Barbara ; Forsyth, Corey ; Howard, William ; Staszak, David ; Zuzick, Dave ; Williamson, Latoya ; Helm, Benjamin ; Kendyl, Norton ; Kevin, Jaglinski ; Marcogardoqui, Guillermo ; Marianne, Stef ; Gidding, Samuel S ; Cuchel, Marina ; Jacoby, Douglas ; Chen, Jinbo ; Wilemon, Katherine A ; Myers, Kelly D ; Andersen, Rolf ; Rader, Daniel J</creatorcontrib><description>IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value<0.001). The relationship between FIND FH score and FH-causing mutation was not significant per strata (p-value, 0.464) but significant with FIND FH score treated as a continuous variable (p-value, 0.013).ConclusionsIn this evaluation of electronic health record data, the MLA demonstrated a gradient between FIND FH score and likelihood of having FH. Further implementation is necessary to evaluate the applicability of FIND FH in diverse health care settings and the utility of the MLA to improve cardiovascular outcomes.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/circ.140.suppl_1.16599</identifier><language>eng</language><publisher>by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><ispartof>Circulation (New York, N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A16599-A16599</ispartof><rights>2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sheth, Samip</creatorcontrib><creatorcontrib>Andersen, Lars</creatorcontrib><creatorcontrib>Ajufo, Ezim</creatorcontrib><creatorcontrib>Baer, Amanda</creatorcontrib><creatorcontrib>Isenberg, Matt</creatorcontrib><creatorcontrib>Andrea, Berrido</creatorcontrib><creatorcontrib>Oyerinde, Esther</creatorcontrib><creatorcontrib>Lynch, Marita</creatorcontrib><creatorcontrib>Marjorie, Risman</creatorcontrib><creatorcontrib>Wells, Brian</creatorcontrib><creatorcontrib>Borovskiy, Yuliya</creatorcontrib><creatorcontrib>Hossain, Erik</creatorcontrib><creatorcontrib>Estrella, Lisa</creatorcontrib><creatorcontrib>testa, heidi</creatorcontrib><creatorcontrib>Horst, Michael</creatorcontrib><creatorcontrib>Forney, Cathleen</creatorcontrib><creatorcontrib>Martin, Barbara</creatorcontrib><creatorcontrib>Forsyth, Corey</creatorcontrib><creatorcontrib>Howard, William</creatorcontrib><creatorcontrib>Staszak, David</creatorcontrib><creatorcontrib>Zuzick, Dave</creatorcontrib><creatorcontrib>Williamson, Latoya</creatorcontrib><creatorcontrib>Helm, Benjamin</creatorcontrib><creatorcontrib>Kendyl, Norton</creatorcontrib><creatorcontrib>Kevin, Jaglinski</creatorcontrib><creatorcontrib>Marcogardoqui, Guillermo</creatorcontrib><creatorcontrib>Marianne, Stef</creatorcontrib><creatorcontrib>Gidding, Samuel S</creatorcontrib><creatorcontrib>Cuchel, Marina</creatorcontrib><creatorcontrib>Jacoby, Douglas</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Wilemon, Katherine A</creatorcontrib><creatorcontrib>Myers, Kelly D</creatorcontrib><creatorcontrib>Andersen, Rolf</creatorcontrib><creatorcontrib>Rader, Daniel J</creatorcontrib><title>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</title><title>Circulation (New York, N.Y.)</title><description>IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value<0.001). The relationship between FIND FH score and FH-causing mutation was not significant per strata (p-value, 0.464) but significant with FIND FH score treated as a continuous variable (p-value, 0.013).ConclusionsIn this evaluation of electronic health record data, the MLA demonstrated a gradient between FIND FH score and likelihood of having FH. Further implementation is necessary to evaluate the applicability of FIND FH in diverse health care settings and the utility of the MLA to improve cardiovascular outcomes.</description><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqdj1tOwzAQRS0EEuWxBTQLaIKdR0v6V0Gj8AFINMBnZJxpM9SNK9tt1ZWxPawKsQA-RlejO-dIw9iN4LEQI3GryKpYZDx2281GNyIWo7woTthA5EkWZXlanLIB57yIxmmSnLML577COkrH-YB9Tz-dt1J5OFITeJeaWunJ9PCygFLL5RAeW-w9LQ5DeEa_N3Y1hAfUtEM7gZL6FsoK3hz1S6g7hJlG5a3pScETtqSkhldUxrZQmz8VlHJNmkJXHTZoVWc0Oo82xJokfJDvqIcpzINVI1Qote-UtAjzQ7hbX7GzhdQOr3_zkmXlrL6vor3RQeNWertH23RHrgnv8pSLcZRwUQgRJuLpnUjSf2I_J2tzSw</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Sheth, Samip</creator><creator>Andersen, Lars</creator><creator>Ajufo, Ezim</creator><creator>Baer, Amanda</creator><creator>Isenberg, Matt</creator><creator>Andrea, Berrido</creator><creator>Oyerinde, Esther</creator><creator>Lynch, Marita</creator><creator>Marjorie, Risman</creator><creator>Wells, Brian</creator><creator>Borovskiy, Yuliya</creator><creator>Hossain, Erik</creator><creator>Estrella, Lisa</creator><creator>testa, heidi</creator><creator>Horst, Michael</creator><creator>Forney, Cathleen</creator><creator>Martin, Barbara</creator><creator>Forsyth, Corey</creator><creator>Howard, William</creator><creator>Staszak, David</creator><creator>Zuzick, Dave</creator><creator>Williamson, Latoya</creator><creator>Helm, Benjamin</creator><creator>Kendyl, Norton</creator><creator>Kevin, Jaglinski</creator><creator>Marcogardoqui, Guillermo</creator><creator>Marianne, Stef</creator><creator>Gidding, Samuel S</creator><creator>Cuchel, Marina</creator><creator>Jacoby, Douglas</creator><creator>Chen, Jinbo</creator><creator>Wilemon, Katherine A</creator><creator>Myers, Kelly D</creator><creator>Andersen, Rolf</creator><creator>Rader, Daniel J</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><scope/></search><sort><creationdate>20191119</creationdate><title>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</title><author>Sheth, Samip ; Andersen, Lars ; Ajufo, Ezim ; Baer, Amanda ; Isenberg, Matt ; Andrea, Berrido ; Oyerinde, Esther ; Lynch, Marita ; Marjorie, Risman ; Wells, Brian ; Borovskiy, Yuliya ; Hossain, Erik ; Estrella, Lisa ; testa, heidi ; Horst, Michael ; Forney, Cathleen ; Martin, Barbara ; Forsyth, Corey ; Howard, William ; Staszak, David ; Zuzick, Dave ; Williamson, Latoya ; Helm, Benjamin ; Kendyl, Norton ; Kevin, Jaglinski ; Marcogardoqui, Guillermo ; Marianne, Stef ; Gidding, Samuel S ; Cuchel, Marina ; Jacoby, Douglas ; Chen, Jinbo ; Wilemon, Katherine A ; Myers, Kelly D ; Andersen, Rolf ; Rader, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wolterskluwer_health_00003017-201911191-038123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sheth, Samip</creatorcontrib><creatorcontrib>Andersen, Lars</creatorcontrib><creatorcontrib>Ajufo, Ezim</creatorcontrib><creatorcontrib>Baer, Amanda</creatorcontrib><creatorcontrib>Isenberg, Matt</creatorcontrib><creatorcontrib>Andrea, Berrido</creatorcontrib><creatorcontrib>Oyerinde, Esther</creatorcontrib><creatorcontrib>Lynch, Marita</creatorcontrib><creatorcontrib>Marjorie, Risman</creatorcontrib><creatorcontrib>Wells, Brian</creatorcontrib><creatorcontrib>Borovskiy, Yuliya</creatorcontrib><creatorcontrib>Hossain, Erik</creatorcontrib><creatorcontrib>Estrella, Lisa</creatorcontrib><creatorcontrib>testa, heidi</creatorcontrib><creatorcontrib>Horst, Michael</creatorcontrib><creatorcontrib>Forney, Cathleen</creatorcontrib><creatorcontrib>Martin, Barbara</creatorcontrib><creatorcontrib>Forsyth, Corey</creatorcontrib><creatorcontrib>Howard, William</creatorcontrib><creatorcontrib>Staszak, David</creatorcontrib><creatorcontrib>Zuzick, Dave</creatorcontrib><creatorcontrib>Williamson, Latoya</creatorcontrib><creatorcontrib>Helm, Benjamin</creatorcontrib><creatorcontrib>Kendyl, Norton</creatorcontrib><creatorcontrib>Kevin, Jaglinski</creatorcontrib><creatorcontrib>Marcogardoqui, Guillermo</creatorcontrib><creatorcontrib>Marianne, Stef</creatorcontrib><creatorcontrib>Gidding, Samuel S</creatorcontrib><creatorcontrib>Cuchel, Marina</creatorcontrib><creatorcontrib>Jacoby, Douglas</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Wilemon, Katherine A</creatorcontrib><creatorcontrib>Myers, Kelly D</creatorcontrib><creatorcontrib>Andersen, Rolf</creatorcontrib><creatorcontrib>Rader, Daniel J</creatorcontrib><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheth, Samip</au><au>Andersen, Lars</au><au>Ajufo, Ezim</au><au>Baer, Amanda</au><au>Isenberg, Matt</au><au>Andrea, Berrido</au><au>Oyerinde, Esther</au><au>Lynch, Marita</au><au>Marjorie, Risman</au><au>Wells, Brian</au><au>Borovskiy, Yuliya</au><au>Hossain, Erik</au><au>Estrella, Lisa</au><au>testa, heidi</au><au>Horst, Michael</au><au>Forney, Cathleen</au><au>Martin, Barbara</au><au>Forsyth, Corey</au><au>Howard, William</au><au>Staszak, David</au><au>Zuzick, Dave</au><au>Williamson, Latoya</au><au>Helm, Benjamin</au><au>Kendyl, Norton</au><au>Kevin, Jaglinski</au><au>Marcogardoqui, Guillermo</au><au>Marianne, Stef</au><au>Gidding, Samuel S</au><au>Cuchel, Marina</au><au>Jacoby, Douglas</au><au>Chen, Jinbo</au><au>Wilemon, Katherine A</au><au>Myers, Kelly D</au><au>Andersen, Rolf</au><au>Rader, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><date>2019-11-19</date><risdate>2019</risdate><volume>140</volume><issue>Suppl_1 Suppl 1</issue><spage>A16599</spage><epage>A16599</epage><pages>A16599-A16599</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value<0.001). The relationship between FIND FH score and FH-causing mutation was not significant per strata (p-value, 0.464) but significant with FIND FH score treated as a continuous variable (p-value, 0.013).ConclusionsIn this evaluation of electronic health record data, the MLA demonstrated a gradient between FIND FH score and likelihood of having FH. Further implementation is necessary to evaluate the applicability of FIND FH in diverse health care settings and the utility of the MLA to improve cardiovascular outcomes.</abstract><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><doi>10.1161/circ.140.suppl_1.16599</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7322 |
ispartof | Circulation (New York, N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A16599-A16599 |
issn | 0009-7322 1524-4539 |
language | eng |
recordid | cdi_wolterskluwer_health_00003017-201911191-03812 |
source | EZB Electronic Journals Library; American Heart Association; Journals@Ovid Complete |
title | Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wolterskluwer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstract%2016599:%20Validation%20Of%20Flag,%20Identify,%20Network,%20Deliver:%20Find%20FH%20Using%20The%20Electronic%20Medical%20Record%20To%20Identify%20Familial%20Hypercholesterolemia%20Within%20A%20Single%20Healthcare%20System&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Sheth,%20Samip&rft.date=2019-11-19&rft.volume=140&rft.issue=Suppl_1%20Suppl%201&rft.spage=A16599&rft.epage=A16599&rft.pages=A16599-A16599&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/circ.140.suppl_1.16599&rft_dat=%3Cwolterskluwer%3E00003017-201911191-03812%3C/wolterskluwer%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |