Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System

IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A16599-A16599
Hauptverfasser: Sheth, Samip, Andersen, Lars, Ajufo, Ezim, Baer, Amanda, Isenberg, Matt, Andrea, Berrido, Oyerinde, Esther, Lynch, Marita, Marjorie, Risman, Wells, Brian, Borovskiy, Yuliya, Hossain, Erik, Estrella, Lisa, testa, heidi, Horst, Michael, Forney, Cathleen, Martin, Barbara, Forsyth, Corey, Howard, William, Staszak, David, Zuzick, Dave, Williamson, Latoya, Helm, Benjamin, Kendyl, Norton, Kevin, Jaglinski, Marcogardoqui, Guillermo, Marianne, Stef, Gidding, Samuel S, Cuchel, Marina, Jacoby, Douglas, Chen, Jinbo, Wilemon, Katherine A, Myers, Kelly D, Andersen, Rolf, Rader, Daniel J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A16599
container_issue Suppl_1 Suppl 1
container_start_page A16599
container_title Circulation (New York, N.Y.)
container_volume 140
creator Sheth, Samip
Andersen, Lars
Ajufo, Ezim
Baer, Amanda
Isenberg, Matt
Andrea, Berrido
Oyerinde, Esther
Lynch, Marita
Marjorie, Risman
Wells, Brian
Borovskiy, Yuliya
Hossain, Erik
Estrella, Lisa
testa, heidi
Horst, Michael
Forney, Cathleen
Martin, Barbara
Forsyth, Corey
Howard, William
Staszak, David
Zuzick, Dave
Williamson, Latoya
Helm, Benjamin
Kendyl, Norton
Kevin, Jaglinski
Marcogardoqui, Guillermo
Marianne, Stef
Gidding, Samuel S
Cuchel, Marina
Jacoby, Douglas
Chen, Jinbo
Wilemon, Katherine A
Myers, Kelly D
Andersen, Rolf
Rader, Daniel J
description IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value
doi_str_mv 10.1161/circ.140.suppl_1.16599
format Article
fullrecord <record><control><sourceid>wolterskluwer</sourceid><recordid>TN_cdi_wolterskluwer_health_00003017-201911191-03812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>00003017-201911191-03812</sourcerecordid><originalsourceid>FETCH-wolterskluwer_health_00003017-201911191-038123</originalsourceid><addsrcrecordid>eNqdj1tOwzAQRS0EEuWxBTQLaIKdR0v6V0Gj8AFINMBnZJxpM9SNK9tt1ZWxPawKsQA-RlejO-dIw9iN4LEQI3GryKpYZDx2281GNyIWo7woTthA5EkWZXlanLIB57yIxmmSnLML577COkrH-YB9Tz-dt1J5OFITeJeaWunJ9PCygFLL5RAeW-w9LQ5DeEa_N3Y1hAfUtEM7gZL6FsoK3hz1S6g7hJlG5a3pScETtqSkhldUxrZQmz8VlHJNmkJXHTZoVWc0Oo82xJokfJDvqIcpzINVI1Qote-UtAjzQ7hbX7GzhdQOr3_zkmXlrL6vor3RQeNWertH23RHrgnv8pSLcZRwUQgRJuLpnUjSf2I_J2tzSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</title><source>EZB Electronic Journals Library</source><source>American Heart Association</source><source>Journals@Ovid Complete</source><creator>Sheth, Samip ; Andersen, Lars ; Ajufo, Ezim ; Baer, Amanda ; Isenberg, Matt ; Andrea, Berrido ; Oyerinde, Esther ; Lynch, Marita ; Marjorie, Risman ; Wells, Brian ; Borovskiy, Yuliya ; Hossain, Erik ; Estrella, Lisa ; testa, heidi ; Horst, Michael ; Forney, Cathleen ; Martin, Barbara ; Forsyth, Corey ; Howard, William ; Staszak, David ; Zuzick, Dave ; Williamson, Latoya ; Helm, Benjamin ; Kendyl, Norton ; Kevin, Jaglinski ; Marcogardoqui, Guillermo ; Marianne, Stef ; Gidding, Samuel S ; Cuchel, Marina ; Jacoby, Douglas ; Chen, Jinbo ; Wilemon, Katherine A ; Myers, Kelly D ; Andersen, Rolf ; Rader, Daniel J</creator><creatorcontrib>Sheth, Samip ; Andersen, Lars ; Ajufo, Ezim ; Baer, Amanda ; Isenberg, Matt ; Andrea, Berrido ; Oyerinde, Esther ; Lynch, Marita ; Marjorie, Risman ; Wells, Brian ; Borovskiy, Yuliya ; Hossain, Erik ; Estrella, Lisa ; testa, heidi ; Horst, Michael ; Forney, Cathleen ; Martin, Barbara ; Forsyth, Corey ; Howard, William ; Staszak, David ; Zuzick, Dave ; Williamson, Latoya ; Helm, Benjamin ; Kendyl, Norton ; Kevin, Jaglinski ; Marcogardoqui, Guillermo ; Marianne, Stef ; Gidding, Samuel S ; Cuchel, Marina ; Jacoby, Douglas ; Chen, Jinbo ; Wilemon, Katherine A ; Myers, Kelly D ; Andersen, Rolf ; Rader, Daniel J</creatorcontrib><description>IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value&lt;0.001). The relationship between FIND FH score and FH-causing mutation was not significant per strata (p-value, 0.464) but significant with FIND FH score treated as a continuous variable (p-value, 0.013).ConclusionsIn this evaluation of electronic health record data, the MLA demonstrated a gradient between FIND FH score and likelihood of having FH. Further implementation is necessary to evaluate the applicability of FIND FH in diverse health care settings and the utility of the MLA to improve cardiovascular outcomes.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/circ.140.suppl_1.16599</identifier><language>eng</language><publisher>by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><ispartof>Circulation (New York, N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A16599-A16599</ispartof><rights>2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sheth, Samip</creatorcontrib><creatorcontrib>Andersen, Lars</creatorcontrib><creatorcontrib>Ajufo, Ezim</creatorcontrib><creatorcontrib>Baer, Amanda</creatorcontrib><creatorcontrib>Isenberg, Matt</creatorcontrib><creatorcontrib>Andrea, Berrido</creatorcontrib><creatorcontrib>Oyerinde, Esther</creatorcontrib><creatorcontrib>Lynch, Marita</creatorcontrib><creatorcontrib>Marjorie, Risman</creatorcontrib><creatorcontrib>Wells, Brian</creatorcontrib><creatorcontrib>Borovskiy, Yuliya</creatorcontrib><creatorcontrib>Hossain, Erik</creatorcontrib><creatorcontrib>Estrella, Lisa</creatorcontrib><creatorcontrib>testa, heidi</creatorcontrib><creatorcontrib>Horst, Michael</creatorcontrib><creatorcontrib>Forney, Cathleen</creatorcontrib><creatorcontrib>Martin, Barbara</creatorcontrib><creatorcontrib>Forsyth, Corey</creatorcontrib><creatorcontrib>Howard, William</creatorcontrib><creatorcontrib>Staszak, David</creatorcontrib><creatorcontrib>Zuzick, Dave</creatorcontrib><creatorcontrib>Williamson, Latoya</creatorcontrib><creatorcontrib>Helm, Benjamin</creatorcontrib><creatorcontrib>Kendyl, Norton</creatorcontrib><creatorcontrib>Kevin, Jaglinski</creatorcontrib><creatorcontrib>Marcogardoqui, Guillermo</creatorcontrib><creatorcontrib>Marianne, Stef</creatorcontrib><creatorcontrib>Gidding, Samuel S</creatorcontrib><creatorcontrib>Cuchel, Marina</creatorcontrib><creatorcontrib>Jacoby, Douglas</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Wilemon, Katherine A</creatorcontrib><creatorcontrib>Myers, Kelly D</creatorcontrib><creatorcontrib>Andersen, Rolf</creatorcontrib><creatorcontrib>Rader, Daniel J</creatorcontrib><title>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</title><title>Circulation (New York, N.Y.)</title><description>IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value&lt;0.001). The relationship between FIND FH score and FH-causing mutation was not significant per strata (p-value, 0.464) but significant with FIND FH score treated as a continuous variable (p-value, 0.013).ConclusionsIn this evaluation of electronic health record data, the MLA demonstrated a gradient between FIND FH score and likelihood of having FH. Further implementation is necessary to evaluate the applicability of FIND FH in diverse health care settings and the utility of the MLA to improve cardiovascular outcomes.</description><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqdj1tOwzAQRS0EEuWxBTQLaIKdR0v6V0Gj8AFINMBnZJxpM9SNK9tt1ZWxPawKsQA-RlejO-dIw9iN4LEQI3GryKpYZDx2281GNyIWo7woTthA5EkWZXlanLIB57yIxmmSnLML577COkrH-YB9Tz-dt1J5OFITeJeaWunJ9PCygFLL5RAeW-w9LQ5DeEa_N3Y1hAfUtEM7gZL6FsoK3hz1S6g7hJlG5a3pScETtqSkhldUxrZQmz8VlHJNmkJXHTZoVWc0Oo82xJokfJDvqIcpzINVI1Qote-UtAjzQ7hbX7GzhdQOr3_zkmXlrL6vor3RQeNWertH23RHrgnv8pSLcZRwUQgRJuLpnUjSf2I_J2tzSw</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Sheth, Samip</creator><creator>Andersen, Lars</creator><creator>Ajufo, Ezim</creator><creator>Baer, Amanda</creator><creator>Isenberg, Matt</creator><creator>Andrea, Berrido</creator><creator>Oyerinde, Esther</creator><creator>Lynch, Marita</creator><creator>Marjorie, Risman</creator><creator>Wells, Brian</creator><creator>Borovskiy, Yuliya</creator><creator>Hossain, Erik</creator><creator>Estrella, Lisa</creator><creator>testa, heidi</creator><creator>Horst, Michael</creator><creator>Forney, Cathleen</creator><creator>Martin, Barbara</creator><creator>Forsyth, Corey</creator><creator>Howard, William</creator><creator>Staszak, David</creator><creator>Zuzick, Dave</creator><creator>Williamson, Latoya</creator><creator>Helm, Benjamin</creator><creator>Kendyl, Norton</creator><creator>Kevin, Jaglinski</creator><creator>Marcogardoqui, Guillermo</creator><creator>Marianne, Stef</creator><creator>Gidding, Samuel S</creator><creator>Cuchel, Marina</creator><creator>Jacoby, Douglas</creator><creator>Chen, Jinbo</creator><creator>Wilemon, Katherine A</creator><creator>Myers, Kelly D</creator><creator>Andersen, Rolf</creator><creator>Rader, Daniel J</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><scope/></search><sort><creationdate>20191119</creationdate><title>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</title><author>Sheth, Samip ; Andersen, Lars ; Ajufo, Ezim ; Baer, Amanda ; Isenberg, Matt ; Andrea, Berrido ; Oyerinde, Esther ; Lynch, Marita ; Marjorie, Risman ; Wells, Brian ; Borovskiy, Yuliya ; Hossain, Erik ; Estrella, Lisa ; testa, heidi ; Horst, Michael ; Forney, Cathleen ; Martin, Barbara ; Forsyth, Corey ; Howard, William ; Staszak, David ; Zuzick, Dave ; Williamson, Latoya ; Helm, Benjamin ; Kendyl, Norton ; Kevin, Jaglinski ; Marcogardoqui, Guillermo ; Marianne, Stef ; Gidding, Samuel S ; Cuchel, Marina ; Jacoby, Douglas ; Chen, Jinbo ; Wilemon, Katherine A ; Myers, Kelly D ; Andersen, Rolf ; Rader, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wolterskluwer_health_00003017-201911191-038123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sheth, Samip</creatorcontrib><creatorcontrib>Andersen, Lars</creatorcontrib><creatorcontrib>Ajufo, Ezim</creatorcontrib><creatorcontrib>Baer, Amanda</creatorcontrib><creatorcontrib>Isenberg, Matt</creatorcontrib><creatorcontrib>Andrea, Berrido</creatorcontrib><creatorcontrib>Oyerinde, Esther</creatorcontrib><creatorcontrib>Lynch, Marita</creatorcontrib><creatorcontrib>Marjorie, Risman</creatorcontrib><creatorcontrib>Wells, Brian</creatorcontrib><creatorcontrib>Borovskiy, Yuliya</creatorcontrib><creatorcontrib>Hossain, Erik</creatorcontrib><creatorcontrib>Estrella, Lisa</creatorcontrib><creatorcontrib>testa, heidi</creatorcontrib><creatorcontrib>Horst, Michael</creatorcontrib><creatorcontrib>Forney, Cathleen</creatorcontrib><creatorcontrib>Martin, Barbara</creatorcontrib><creatorcontrib>Forsyth, Corey</creatorcontrib><creatorcontrib>Howard, William</creatorcontrib><creatorcontrib>Staszak, David</creatorcontrib><creatorcontrib>Zuzick, Dave</creatorcontrib><creatorcontrib>Williamson, Latoya</creatorcontrib><creatorcontrib>Helm, Benjamin</creatorcontrib><creatorcontrib>Kendyl, Norton</creatorcontrib><creatorcontrib>Kevin, Jaglinski</creatorcontrib><creatorcontrib>Marcogardoqui, Guillermo</creatorcontrib><creatorcontrib>Marianne, Stef</creatorcontrib><creatorcontrib>Gidding, Samuel S</creatorcontrib><creatorcontrib>Cuchel, Marina</creatorcontrib><creatorcontrib>Jacoby, Douglas</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Wilemon, Katherine A</creatorcontrib><creatorcontrib>Myers, Kelly D</creatorcontrib><creatorcontrib>Andersen, Rolf</creatorcontrib><creatorcontrib>Rader, Daniel J</creatorcontrib><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheth, Samip</au><au>Andersen, Lars</au><au>Ajufo, Ezim</au><au>Baer, Amanda</au><au>Isenberg, Matt</au><au>Andrea, Berrido</au><au>Oyerinde, Esther</au><au>Lynch, Marita</au><au>Marjorie, Risman</au><au>Wells, Brian</au><au>Borovskiy, Yuliya</au><au>Hossain, Erik</au><au>Estrella, Lisa</au><au>testa, heidi</au><au>Horst, Michael</au><au>Forney, Cathleen</au><au>Martin, Barbara</au><au>Forsyth, Corey</au><au>Howard, William</au><au>Staszak, David</au><au>Zuzick, Dave</au><au>Williamson, Latoya</au><au>Helm, Benjamin</au><au>Kendyl, Norton</au><au>Kevin, Jaglinski</au><au>Marcogardoqui, Guillermo</au><au>Marianne, Stef</au><au>Gidding, Samuel S</au><au>Cuchel, Marina</au><au>Jacoby, Douglas</au><au>Chen, Jinbo</au><au>Wilemon, Katherine A</au><au>Myers, Kelly D</au><au>Andersen, Rolf</au><au>Rader, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><date>2019-11-19</date><risdate>2019</risdate><volume>140</volume><issue>Suppl_1 Suppl 1</issue><spage>A16599</spage><epage>A16599</epage><pages>A16599-A16599</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>IntroductionFamilial hypercholesterolemia (FH) is a common underdiagnosed and undertreated condition that leads to premature cardiovascular disease. A machine learning algorithm (MLA) uses artificial intelligence technology to screen for FH. We validated the use of an MLA ‘FIND FH,’ developed by the FH Foundation, by determining the relationship between the FIND FH score (the output of the algorithm) and either an FH clinical diagnosis or FH-causing mutation in the University of Pennsylvania Healthcare System (UPHS).MethodsFIND FH was trained to detect FH using clinically and genetically diagnosed FH patients from four health systems. Diagnostic performance for FH was evaluated using patients with a cardiovascular co-morbidity at UPHS. Of 700,701 individuals, 181,107 had a FIND FH score above 0.0. The patients were assigned to five pre-defined strata based on FIND FH score‘A’ (≥0.35), ‘B’ (0.20-0.35), ‘C’ (0.16-0.19), ‘D’ (0.06-0.15), and ‘E’ (0.0-0.05). While blinded to genetic results, two lipidologists reviewed medical charts on a sample of patients per strata to establish a clinical diagnosis of FH. Genetic testing was independently performed on these patients by Grifols. A chi-squared analysis and regression model was used to determine the relationship between FIND FH score (strata, continuous) and FH clinical or genetic diagnosis.ResultsIn the validation dataset (n = 414 patients; mean [SD] age, 58.2 [14.6] years; 54% male; 79% white), the prevalence of FH was 33% in strata A (n=109), 25% in strata B (n=109), 19% strata C (n=98), 10% in strata D (n=52), and 2% in strata E (n=46). The relationship between FIND FH score and an FH clinical diagnosis was significant per strata (p-value&lt;0.001). The relationship between FIND FH score and FH-causing mutation was not significant per strata (p-value, 0.464) but significant with FIND FH score treated as a continuous variable (p-value, 0.013).ConclusionsIn this evaluation of electronic health record data, the MLA demonstrated a gradient between FIND FH score and likelihood of having FH. Further implementation is necessary to evaluate the applicability of FIND FH in diverse health care settings and the utility of the MLA to improve cardiovascular outcomes.</abstract><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><doi>10.1161/circ.140.suppl_1.16599</doi></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A16599-A16599
issn 0009-7322
1524-4539
language eng
recordid cdi_wolterskluwer_health_00003017-201911191-03812
source EZB Electronic Journals Library; American Heart Association; Journals@Ovid Complete
title Abstract 16599: Validation Of Flag, Identify, Network, Deliver: Find FH Using The Electronic Medical Record To Identify Familial Hypercholesterolemia Within A Single Healthcare System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wolterskluwer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstract%2016599:%20Validation%20Of%20Flag,%20Identify,%20Network,%20Deliver:%20Find%20FH%20Using%20The%20Electronic%20Medical%20Record%20To%20Identify%20Familial%20Hypercholesterolemia%20Within%20A%20Single%20Healthcare%20System&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Sheth,%20Samip&rft.date=2019-11-19&rft.volume=140&rft.issue=Suppl_1%20Suppl%201&rft.spage=A16599&rft.epage=A16599&rft.pages=A16599-A16599&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/circ.140.suppl_1.16599&rft_dat=%3Cwolterskluwer%3E00003017-201911191-03812%3C/wolterskluwer%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true