TH-AB-207A-01: Contrast-Enhanced CT: Correlation of Radiation Dose and Biological Effect
Purpose: The potential risk from CT is generally characterized in terms of radiation dose. The presence of iodinated-contrast medium increases radiation dose. However, it is unclear how much of this increase is biologically relevant. The purpose of this study was to establish the contribution of dos...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2016-06, Vol.43 (6), p.3859-3859 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3859 |
---|---|
container_issue | 6 |
container_start_page | 3859 |
container_title | Medical physics (Lancaster) |
container_volume | 43 |
creator | Abadi, E Sanders, J Agasthya, G Segars, P Samei, E |
description | Purpose:
The potential risk from CT is generally characterized in terms of radiation dose. The presence of iodinated-contrast medium increases radiation dose. However, it is unclear how much of this increase is biologically relevant. The purpose of this study was to establish the contribution of dose increase from iodine to biological effect.
Methods:
Radiation organ dose was estimated in 58 human (XCAT) phantoms “undergoing” chest CT examination (120 kVp, 9 mGy CTDI) on a simulated CT system (Definition Flash, Siemens) with and without iodinated-contrast agent (62.5 mL of iodine per subject). The dose without and with the presence of iodine was compared to the increase in foci per cell (a surrogate of DNA damage) measured before and after similar CT exams without and with contrast agent (Piechowiak et al. 2015). The data were analyzed to ascertain how the enhancement in biological effect in contrast-enhanced CTs correlated with the increase in dose due to the presence of iodine.
Results:
The presence of iodinated-contrast in CT increased the organ doses by 2% to 50% on average. Typical values were heart (50%±7%), kidney (19%±7%), and liver (2%±3%). The corresponding increase in the average foci per cell was 107%±19%, indicating biological effect of iodine was greater than what would be anticipated from the iodine-initiated increase in radiation dose alone.
Conclusion:
Mean foci per cell and organ dose both increase in the presence of contrast agent. The former, however, is at least twice as large as the latter, indicating that iodine contributes to an increase in the probability of DNA damage not only as a consequence of increased x-ray energy deposition but also from other mechanisms. Hence iodine radiation dose, while relevant to be included in estimating the risk associated with contrast-enhanced CT, still can underestimate the biological effects. |
doi_str_mv | 10.1118/1.4958077 |
format | Article |
fullrecord | <record><control><sourceid>wiley_scita</sourceid><recordid>TN_cdi_wiley_primary_10_1118_1_4958077_MP8077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP8077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1757-6804ff21de714d5909a0b81ef42b565d09ad9d955644d4300d93defb0789a3eb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XUSTbZbLy1a7VCRZEK3kKaDxtZN7JZkP57t26vehre4eGd4UHonMCEEFJekwmTvAQhDtCIMpFjRkEeohGAZJgy4MfoJKUPAChyDiP0tlrg6QxTEFMM5CarYtO1OnV43mx0Y5zNqtVu27au1l2ITRZ99qJtGMJtTC7Tjc1mIdbxPRhdZ3PvnelO0ZHXdXJn-zlGr3fzVbXAy6f7h2q6xIYILnBRAvOeEusEYZZLkBrWJXGe0TUvuO2zlVZyXjBmWQ5gZW6dX4Mopc7dOh-ji6E3pi6oZELnzMbEpul_UJQWQlIqe-pyoEwbU2qdV19t-NTtVhFQO3GKqL24nsUD-x1qt_0bVI_Pe_5q4HfHf7X8U_4DQPl3Tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TH-AB-207A-01: Contrast-Enhanced CT: Correlation of Radiation Dose and Biological Effect</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Abadi, E ; Sanders, J ; Agasthya, G ; Segars, P ; Samei, E</creator><creatorcontrib>Abadi, E ; Sanders, J ; Agasthya, G ; Segars, P ; Samei, E</creatorcontrib><description>Purpose:
The potential risk from CT is generally characterized in terms of radiation dose. The presence of iodinated-contrast medium increases radiation dose. However, it is unclear how much of this increase is biologically relevant. The purpose of this study was to establish the contribution of dose increase from iodine to biological effect.
Methods:
Radiation organ dose was estimated in 58 human (XCAT) phantoms “undergoing” chest CT examination (120 kVp, 9 mGy CTDI) on a simulated CT system (Definition Flash, Siemens) with and without iodinated-contrast agent (62.5 mL of iodine per subject). The dose without and with the presence of iodine was compared to the increase in foci per cell (a surrogate of DNA damage) measured before and after similar CT exams without and with contrast agent (Piechowiak et al. 2015). The data were analyzed to ascertain how the enhancement in biological effect in contrast-enhanced CTs correlated with the increase in dose due to the presence of iodine.
Results:
The presence of iodinated-contrast in CT increased the organ doses by 2% to 50% on average. Typical values were heart (50%±7%), kidney (19%±7%), and liver (2%±3%). The corresponding increase in the average foci per cell was 107%±19%, indicating biological effect of iodine was greater than what would be anticipated from the iodine-initiated increase in radiation dose alone.
Conclusion:
Mean foci per cell and organ dose both increase in the presence of contrast agent. The former, however, is at least twice as large as the latter, indicating that iodine contributes to an increase in the probability of DNA damage not only as a consequence of increased x-ray energy deposition but also from other mechanisms. Hence iodine radiation dose, while relevant to be included in estimating the risk associated with contrast-enhanced CT, still can underestimate the biological effects.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4958077</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; BIOLOGICAL EFFECTS ; CONTRAST MEDIA ; Data analysis ; DNA ; DNA DAMAGES ; Dosimetry ; ENERGY ABSORPTION ; ENERGY LOSSES ; Heart ; IODINE ; Kidneys ; Liver ; RADIATION DOSES ; RADIATION PROTECTION AND DOSIMETRY ; X RADIATION ; X‐ray effects ; X‐rays</subject><ispartof>Medical physics (Lancaster), 2016-06, Vol.43 (6), p.3859-3859</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2016 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1757-6804ff21de714d5909a0b81ef42b565d09ad9d955644d4300d93defb0789a3eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4958077$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22679229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abadi, E</creatorcontrib><creatorcontrib>Sanders, J</creatorcontrib><creatorcontrib>Agasthya, G</creatorcontrib><creatorcontrib>Segars, P</creatorcontrib><creatorcontrib>Samei, E</creatorcontrib><title>TH-AB-207A-01: Contrast-Enhanced CT: Correlation of Radiation Dose and Biological Effect</title><title>Medical physics (Lancaster)</title><description>Purpose:
The potential risk from CT is generally characterized in terms of radiation dose. The presence of iodinated-contrast medium increases radiation dose. However, it is unclear how much of this increase is biologically relevant. The purpose of this study was to establish the contribution of dose increase from iodine to biological effect.
Methods:
Radiation organ dose was estimated in 58 human (XCAT) phantoms “undergoing” chest CT examination (120 kVp, 9 mGy CTDI) on a simulated CT system (Definition Flash, Siemens) with and without iodinated-contrast agent (62.5 mL of iodine per subject). The dose without and with the presence of iodine was compared to the increase in foci per cell (a surrogate of DNA damage) measured before and after similar CT exams without and with contrast agent (Piechowiak et al. 2015). The data were analyzed to ascertain how the enhancement in biological effect in contrast-enhanced CTs correlated with the increase in dose due to the presence of iodine.
Results:
The presence of iodinated-contrast in CT increased the organ doses by 2% to 50% on average. Typical values were heart (50%±7%), kidney (19%±7%), and liver (2%±3%). The corresponding increase in the average foci per cell was 107%±19%, indicating biological effect of iodine was greater than what would be anticipated from the iodine-initiated increase in radiation dose alone.
Conclusion:
Mean foci per cell and organ dose both increase in the presence of contrast agent. The former, however, is at least twice as large as the latter, indicating that iodine contributes to an increase in the probability of DNA damage not only as a consequence of increased x-ray energy deposition but also from other mechanisms. Hence iodine radiation dose, while relevant to be included in estimating the risk associated with contrast-enhanced CT, still can underestimate the biological effects.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>BIOLOGICAL EFFECTS</subject><subject>CONTRAST MEDIA</subject><subject>Data analysis</subject><subject>DNA</subject><subject>DNA DAMAGES</subject><subject>Dosimetry</subject><subject>ENERGY ABSORPTION</subject><subject>ENERGY LOSSES</subject><subject>Heart</subject><subject>IODINE</subject><subject>Kidneys</subject><subject>Liver</subject><subject>RADIATION DOSES</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>X RADIATION</subject><subject>X‐ray effects</subject><subject>X‐rays</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XUSTbZbLy1a7VCRZEK3kKaDxtZN7JZkP57t26vehre4eGd4UHonMCEEFJekwmTvAQhDtCIMpFjRkEeohGAZJgy4MfoJKUPAChyDiP0tlrg6QxTEFMM5CarYtO1OnV43mx0Y5zNqtVu27au1l2ITRZ99qJtGMJtTC7Tjc1mIdbxPRhdZ3PvnelO0ZHXdXJn-zlGr3fzVbXAy6f7h2q6xIYILnBRAvOeEusEYZZLkBrWJXGe0TUvuO2zlVZyXjBmWQ5gZW6dX4Mopc7dOh-ji6E3pi6oZELnzMbEpul_UJQWQlIqe-pyoEwbU2qdV19t-NTtVhFQO3GKqL24nsUD-x1qt_0bVI_Pe_5q4HfHf7X8U_4DQPl3Tg</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Abadi, E</creator><creator>Sanders, J</creator><creator>Agasthya, G</creator><creator>Segars, P</creator><creator>Samei, E</creator><general>American Association of Physicists in Medicine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201606</creationdate><title>TH-AB-207A-01: Contrast-Enhanced CT: Correlation of Radiation Dose and Biological Effect</title><author>Abadi, E ; Sanders, J ; Agasthya, G ; Segars, P ; Samei, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1757-6804ff21de714d5909a0b81ef42b565d09ad9d955644d4300d93defb0789a3eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>BIOLOGICAL EFFECTS</topic><topic>CONTRAST MEDIA</topic><topic>Data analysis</topic><topic>DNA</topic><topic>DNA DAMAGES</topic><topic>Dosimetry</topic><topic>ENERGY ABSORPTION</topic><topic>ENERGY LOSSES</topic><topic>Heart</topic><topic>IODINE</topic><topic>Kidneys</topic><topic>Liver</topic><topic>RADIATION DOSES</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>X RADIATION</topic><topic>X‐ray effects</topic><topic>X‐rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadi, E</creatorcontrib><creatorcontrib>Sanders, J</creatorcontrib><creatorcontrib>Agasthya, G</creatorcontrib><creatorcontrib>Segars, P</creatorcontrib><creatorcontrib>Samei, E</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadi, E</au><au>Sanders, J</au><au>Agasthya, G</au><au>Segars, P</au><au>Samei, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TH-AB-207A-01: Contrast-Enhanced CT: Correlation of Radiation Dose and Biological Effect</atitle><jtitle>Medical physics (Lancaster)</jtitle><date>2016-06</date><risdate>2016</risdate><volume>43</volume><issue>6</issue><spage>3859</spage><epage>3859</epage><pages>3859-3859</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Purpose:
The potential risk from CT is generally characterized in terms of radiation dose. The presence of iodinated-contrast medium increases radiation dose. However, it is unclear how much of this increase is biologically relevant. The purpose of this study was to establish the contribution of dose increase from iodine to biological effect.
Methods:
Radiation organ dose was estimated in 58 human (XCAT) phantoms “undergoing” chest CT examination (120 kVp, 9 mGy CTDI) on a simulated CT system (Definition Flash, Siemens) with and without iodinated-contrast agent (62.5 mL of iodine per subject). The dose without and with the presence of iodine was compared to the increase in foci per cell (a surrogate of DNA damage) measured before and after similar CT exams without and with contrast agent (Piechowiak et al. 2015). The data were analyzed to ascertain how the enhancement in biological effect in contrast-enhanced CTs correlated with the increase in dose due to the presence of iodine.
Results:
The presence of iodinated-contrast in CT increased the organ doses by 2% to 50% on average. Typical values were heart (50%±7%), kidney (19%±7%), and liver (2%±3%). The corresponding increase in the average foci per cell was 107%±19%, indicating biological effect of iodine was greater than what would be anticipated from the iodine-initiated increase in radiation dose alone.
Conclusion:
Mean foci per cell and organ dose both increase in the presence of contrast agent. The former, however, is at least twice as large as the latter, indicating that iodine contributes to an increase in the probability of DNA damage not only as a consequence of increased x-ray energy deposition but also from other mechanisms. Hence iodine radiation dose, while relevant to be included in estimating the risk associated with contrast-enhanced CT, still can underestimate the biological effects.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><doi>10.1118/1.4958077</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2016-06, Vol.43 (6), p.3859-3859 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_wiley_primary_10_1118_1_4958077_MP8077 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 60 APPLIED LIFE SCIENCES BIOLOGICAL EFFECTS CONTRAST MEDIA Data analysis DNA DNA DAMAGES Dosimetry ENERGY ABSORPTION ENERGY LOSSES Heart IODINE Kidneys Liver RADIATION DOSES RADIATION PROTECTION AND DOSIMETRY X RADIATION X‐ray effects X‐rays |
title | TH-AB-207A-01: Contrast-Enhanced CT: Correlation of Radiation Dose and Biological Effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TH-AB-207A-01:%20Contrast-Enhanced%20CT:%20Correlation%20of%20Radiation%20Dose%20and%20Biological%20Effect&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Abadi,%20E&rft.date=2016-06&rft.volume=43&rft.issue=6&rft.spage=3859&rft.epage=3859&rft.pages=3859-3859&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.4958077&rft_dat=%3Cwiley_scita%3EMP8077%3C/wiley_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |