Phantom size in brachytherapy source dosimetric studies

An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2004-07, Vol.31 (7), p.2075-2081
Hauptverfasser: Pérez-Calatayud, J., Granero, D., Ballester, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2081
container_issue 7
container_start_page 2075
container_title Medical physics (Lancaster)
container_volume 31
creator Pérez-Calatayud, J.
Granero, D.
Ballester, F.
description An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137 Cs , 192 Ir , 125 I and 103 Pd , mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137 Cs and 192 Ir , a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125 I and 103 Pd , the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R=15  cm . A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137 Cs and 192 Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.
doi_str_mv 10.1118/1.1759826
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_wiley_primary_10_1118_1_1759826_MP9826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP9826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</originalsourceid><addsrcrecordid>eNp9z0tLw0AUhuFBFFurC_-AZKuQeuaaZCnFG1Qs6D5MZs7QkaYJM6kSf72VBHSjq7N5eA8fIecU5pTS_JrOaSaLnKkDMmUi46lgUBySKUAhUiZATshJjG8AoLiEYzKhkoMUCqYkW631tmvqJPpPTPw2qYI2675bY9Btn8RmFwwmtom-xi54k8RuZz3GU3Lk9Cbi2Xhn5OXu9nXxkC6f7x8XN8vUCClVqoqKScgc5ogVhVwrRwVF4yorBJdSK-OsyzTPcwtaMyV4xbSqBEfpNJ-Ry6FqQhNjQFe2wdc69CWF8nt6Sctx-t5eDLbdVTXaHzlu3YN0AB9-g_3fpfJpNQavBh-N73Tnm-2_3__E7034FW-t418oV33a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phantom size in brachytherapy source dosimetric studies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Pérez-Calatayud, J. ; Granero, D. ; Ballester, F.</creator><creatorcontrib>Pérez-Calatayud, J. ; Granero, D. ; Ballester, F.</creatorcontrib><description>An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137 Cs , 192 Ir , 125 I and 103 Pd , mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137 Cs and 192 Ir , a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125 I and 103 Pd , the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R=15  cm . A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137 Cs and 192 Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1759826</identifier><identifier>PMID: 15305460</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Ancillary equipment ; Body Burden ; brachytherapy ; Brachytherapy - methods ; Computer Simulation ; dosimetry ; Humans ; Infrared sources ; Models, Biological ; Monte Carlo Method ; Monte Carlo methods ; Organ Specificity ; phantoms ; Phantoms, Imaging ; Photons ; Physicists ; radioisotopes ; Radioisotopes - analysis ; Radioisotopes - therapeutic use ; Radiometry - methods ; Radiopharmaceuticals - analysis ; Radiopharmaceuticals - therapeutic use ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Relative Biological Effectiveness ; Reproducibility of Results ; Scattering, Radiation ; Sensitivity and Specificity ; Therapeutic applications, including brachytherapy</subject><ispartof>Medical physics (Lancaster), 2004-07, Vol.31 (7), p.2075-2081</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</citedby><cites>FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1759826$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1759826$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15305460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Calatayud, J.</creatorcontrib><creatorcontrib>Granero, D.</creatorcontrib><creatorcontrib>Ballester, F.</creatorcontrib><title>Phantom size in brachytherapy source dosimetric studies</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137 Cs , 192 Ir , 125 I and 103 Pd , mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137 Cs and 192 Ir , a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125 I and 103 Pd , the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R=15  cm . A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137 Cs and 192 Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.</description><subject>Algorithms</subject><subject>Ancillary equipment</subject><subject>Body Burden</subject><subject>brachytherapy</subject><subject>Brachytherapy - methods</subject><subject>Computer Simulation</subject><subject>dosimetry</subject><subject>Humans</subject><subject>Infrared sources</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Organ Specificity</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>Physicists</subject><subject>radioisotopes</subject><subject>Radioisotopes - analysis</subject><subject>Radioisotopes - therapeutic use</subject><subject>Radiometry - methods</subject><subject>Radiopharmaceuticals - analysis</subject><subject>Radiopharmaceuticals - therapeutic use</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Relative Biological Effectiveness</subject><subject>Reproducibility of Results</subject><subject>Scattering, Radiation</subject><subject>Sensitivity and Specificity</subject><subject>Therapeutic applications, including brachytherapy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9z0tLw0AUhuFBFFurC_-AZKuQeuaaZCnFG1Qs6D5MZs7QkaYJM6kSf72VBHSjq7N5eA8fIecU5pTS_JrOaSaLnKkDMmUi46lgUBySKUAhUiZATshJjG8AoLiEYzKhkoMUCqYkW631tmvqJPpPTPw2qYI2675bY9Btn8RmFwwmtom-xi54k8RuZz3GU3Lk9Cbi2Xhn5OXu9nXxkC6f7x8XN8vUCClVqoqKScgc5ogVhVwrRwVF4yorBJdSK-OsyzTPcwtaMyV4xbSqBEfpNJ-Ry6FqQhNjQFe2wdc69CWF8nt6Sctx-t5eDLbdVTXaHzlu3YN0AB9-g_3fpfJpNQavBh-N73Tnm-2_3__E7034FW-t418oV33a</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Pérez-Calatayud, J.</creator><creator>Granero, D.</creator><creator>Ballester, F.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200407</creationdate><title>Phantom size in brachytherapy source dosimetric studies</title><author>Pérez-Calatayud, J. ; Granero, D. ; Ballester, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Ancillary equipment</topic><topic>Body Burden</topic><topic>brachytherapy</topic><topic>Brachytherapy - methods</topic><topic>Computer Simulation</topic><topic>dosimetry</topic><topic>Humans</topic><topic>Infrared sources</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Organ Specificity</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>Physicists</topic><topic>radioisotopes</topic><topic>Radioisotopes - analysis</topic><topic>Radioisotopes - therapeutic use</topic><topic>Radiometry - methods</topic><topic>Radiopharmaceuticals - analysis</topic><topic>Radiopharmaceuticals - therapeutic use</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Relative Biological Effectiveness</topic><topic>Reproducibility of Results</topic><topic>Scattering, Radiation</topic><topic>Sensitivity and Specificity</topic><topic>Therapeutic applications, including brachytherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Calatayud, J.</creatorcontrib><creatorcontrib>Granero, D.</creatorcontrib><creatorcontrib>Ballester, F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Calatayud, J.</au><au>Granero, D.</au><au>Ballester, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phantom size in brachytherapy source dosimetric studies</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-07</date><risdate>2004</risdate><volume>31</volume><issue>7</issue><spage>2075</spage><epage>2081</epage><pages>2075-2081</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137 Cs , 192 Ir , 125 I and 103 Pd , mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137 Cs and 192 Ir , a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125 I and 103 Pd , the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R=15  cm . A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137 Cs and 192 Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>15305460</pmid><doi>10.1118/1.1759826</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2004-07, Vol.31 (7), p.2075-2081
issn 0094-2405
2473-4209
language eng
recordid cdi_wiley_primary_10_1118_1_1759826_MP9826
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Ancillary equipment
Body Burden
brachytherapy
Brachytherapy - methods
Computer Simulation
dosimetry
Humans
Infrared sources
Models, Biological
Monte Carlo Method
Monte Carlo methods
Organ Specificity
phantoms
Phantoms, Imaging
Photons
Physicists
radioisotopes
Radioisotopes - analysis
Radioisotopes - therapeutic use
Radiometry - methods
Radiopharmaceuticals - analysis
Radiopharmaceuticals - therapeutic use
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Relative Biological Effectiveness
Reproducibility of Results
Scattering, Radiation
Sensitivity and Specificity
Therapeutic applications, including brachytherapy
title Phantom size in brachytherapy source dosimetric studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phantom%20size%20in%20brachytherapy%20source%20dosimetric%20studies&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=P%C3%A9rez-Calatayud,%20J.&rft.date=2004-07&rft.volume=31&rft.issue=7&rft.spage=2075&rft.epage=2081&rft.pages=2075-2081&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1759826&rft_dat=%3Cwiley_cross%3EMP9826%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15305460&rfr_iscdi=true