Phantom size in brachytherapy source dosimetric studies
An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D)...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2004-07, Vol.31 (7), p.2075-2081 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2081 |
---|---|
container_issue | 7 |
container_start_page | 2075 |
container_title | Medical physics (Lancaster) |
container_volume | 31 |
creator | Pérez-Calatayud, J. Granero, D. Ballester, F. |
description | An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide
137
Cs
,
192
Ir
,
125
I
and
103
Pd
,
mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for
137
Cs
and
192
Ir
,
a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For
125
I
and
103
Pd
,
the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is
R=15
cm
.
A simple expression based on fits of the dose distributions for various phantom sizes has been developed for
137
Cs
and
192
Ir
in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones. |
doi_str_mv | 10.1118/1.1759826 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_wiley_primary_10_1118_1_1759826_MP9826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP9826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</originalsourceid><addsrcrecordid>eNp9z0tLw0AUhuFBFFurC_-AZKuQeuaaZCnFG1Qs6D5MZs7QkaYJM6kSf72VBHSjq7N5eA8fIecU5pTS_JrOaSaLnKkDMmUi46lgUBySKUAhUiZATshJjG8AoLiEYzKhkoMUCqYkW631tmvqJPpPTPw2qYI2675bY9Btn8RmFwwmtom-xi54k8RuZz3GU3Lk9Cbi2Xhn5OXu9nXxkC6f7x8XN8vUCClVqoqKScgc5ogVhVwrRwVF4yorBJdSK-OsyzTPcwtaMyV4xbSqBEfpNJ-Ry6FqQhNjQFe2wdc69CWF8nt6Sctx-t5eDLbdVTXaHzlu3YN0AB9-g_3fpfJpNQavBh-N73Tnm-2_3__E7034FW-t418oV33a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phantom size in brachytherapy source dosimetric studies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Pérez-Calatayud, J. ; Granero, D. ; Ballester, F.</creator><creatorcontrib>Pérez-Calatayud, J. ; Granero, D. ; Ballester, F.</creatorcontrib><description>An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide
137
Cs
,
192
Ir
,
125
I
and
103
Pd
,
mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for
137
Cs
and
192
Ir
,
a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For
125
I
and
103
Pd
,
the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is
R=15
cm
.
A simple expression based on fits of the dose distributions for various phantom sizes has been developed for
137
Cs
and
192
Ir
in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1759826</identifier><identifier>PMID: 15305460</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Ancillary equipment ; Body Burden ; brachytherapy ; Brachytherapy - methods ; Computer Simulation ; dosimetry ; Humans ; Infrared sources ; Models, Biological ; Monte Carlo Method ; Monte Carlo methods ; Organ Specificity ; phantoms ; Phantoms, Imaging ; Photons ; Physicists ; radioisotopes ; Radioisotopes - analysis ; Radioisotopes - therapeutic use ; Radiometry - methods ; Radiopharmaceuticals - analysis ; Radiopharmaceuticals - therapeutic use ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Relative Biological Effectiveness ; Reproducibility of Results ; Scattering, Radiation ; Sensitivity and Specificity ; Therapeutic applications, including brachytherapy</subject><ispartof>Medical physics (Lancaster), 2004-07, Vol.31 (7), p.2075-2081</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</citedby><cites>FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1759826$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1759826$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15305460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Calatayud, J.</creatorcontrib><creatorcontrib>Granero, D.</creatorcontrib><creatorcontrib>Ballester, F.</creatorcontrib><title>Phantom size in brachytherapy source dosimetric studies</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide
137
Cs
,
192
Ir
,
125
I
and
103
Pd
,
mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for
137
Cs
and
192
Ir
,
a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For
125
I
and
103
Pd
,
the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is
R=15
cm
.
A simple expression based on fits of the dose distributions for various phantom sizes has been developed for
137
Cs
and
192
Ir
in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.</description><subject>Algorithms</subject><subject>Ancillary equipment</subject><subject>Body Burden</subject><subject>brachytherapy</subject><subject>Brachytherapy - methods</subject><subject>Computer Simulation</subject><subject>dosimetry</subject><subject>Humans</subject><subject>Infrared sources</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Organ Specificity</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>Physicists</subject><subject>radioisotopes</subject><subject>Radioisotopes - analysis</subject><subject>Radioisotopes - therapeutic use</subject><subject>Radiometry - methods</subject><subject>Radiopharmaceuticals - analysis</subject><subject>Radiopharmaceuticals - therapeutic use</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Relative Biological Effectiveness</subject><subject>Reproducibility of Results</subject><subject>Scattering, Radiation</subject><subject>Sensitivity and Specificity</subject><subject>Therapeutic applications, including brachytherapy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9z0tLw0AUhuFBFFurC_-AZKuQeuaaZCnFG1Qs6D5MZs7QkaYJM6kSf72VBHSjq7N5eA8fIecU5pTS_JrOaSaLnKkDMmUi46lgUBySKUAhUiZATshJjG8AoLiEYzKhkoMUCqYkW631tmvqJPpPTPw2qYI2675bY9Btn8RmFwwmtom-xi54k8RuZz3GU3Lk9Cbi2Xhn5OXu9nXxkC6f7x8XN8vUCClVqoqKScgc5ogVhVwrRwVF4yorBJdSK-OsyzTPcwtaMyV4xbSqBEfpNJ-Ry6FqQhNjQFe2wdc69CWF8nt6Sctx-t5eDLbdVTXaHzlu3YN0AB9-g_3fpfJpNQavBh-N73Tnm-2_3__E7034FW-t418oV33a</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Pérez-Calatayud, J.</creator><creator>Granero, D.</creator><creator>Ballester, F.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200407</creationdate><title>Phantom size in brachytherapy source dosimetric studies</title><author>Pérez-Calatayud, J. ; Granero, D. ; Ballester, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4556-69b2507fe8eeb108a6f141ecfbd44355a6cfdf7a388d0aa2643b2a6b43e5fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Ancillary equipment</topic><topic>Body Burden</topic><topic>brachytherapy</topic><topic>Brachytherapy - methods</topic><topic>Computer Simulation</topic><topic>dosimetry</topic><topic>Humans</topic><topic>Infrared sources</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Organ Specificity</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>Physicists</topic><topic>radioisotopes</topic><topic>Radioisotopes - analysis</topic><topic>Radioisotopes - therapeutic use</topic><topic>Radiometry - methods</topic><topic>Radiopharmaceuticals - analysis</topic><topic>Radiopharmaceuticals - therapeutic use</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Relative Biological Effectiveness</topic><topic>Reproducibility of Results</topic><topic>Scattering, Radiation</topic><topic>Sensitivity and Specificity</topic><topic>Therapeutic applications, including brachytherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Calatayud, J.</creatorcontrib><creatorcontrib>Granero, D.</creatorcontrib><creatorcontrib>Ballester, F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Calatayud, J.</au><au>Granero, D.</au><au>Ballester, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phantom size in brachytherapy source dosimetric studies</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-07</date><risdate>2004</risdate><volume>31</volume><issue>7</issue><spage>2075</spage><epage>2081</epage><pages>2075-2081</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776–786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide
137
Cs
,
192
Ir
,
125
I
and
103
Pd
,
mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for
137
Cs
and
192
Ir
,
a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For
125
I
and
103
Pd
,
the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is
R=15
cm
.
A simple expression based on fits of the dose distributions for various phantom sizes has been developed for
137
Cs
and
192
Ir
in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>15305460</pmid><doi>10.1118/1.1759826</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2004-07, Vol.31 (7), p.2075-2081 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_wiley_primary_10_1118_1_1759826_MP9826 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Ancillary equipment Body Burden brachytherapy Brachytherapy - methods Computer Simulation dosimetry Humans Infrared sources Models, Biological Monte Carlo Method Monte Carlo methods Organ Specificity phantoms Phantoms, Imaging Photons Physicists radioisotopes Radioisotopes - analysis Radioisotopes - therapeutic use Radiometry - methods Radiopharmaceuticals - analysis Radiopharmaceuticals - therapeutic use Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Relative Biological Effectiveness Reproducibility of Results Scattering, Radiation Sensitivity and Specificity Therapeutic applications, including brachytherapy |
title | Phantom size in brachytherapy source dosimetric studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phantom%20size%20in%20brachytherapy%20source%20dosimetric%20studies&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=P%C3%A9rez-Calatayud,%20J.&rft.date=2004-07&rft.volume=31&rft.issue=7&rft.spage=2075&rft.epage=2081&rft.pages=2075-2081&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1759826&rft_dat=%3Cwiley_cross%3EMP9826%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15305460&rfr_iscdi=true |