Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena

The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p1 minimizers always exist, regardless of the weight function. Inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2012-04, Vol.85 (2), p.282-300
Hauptverfasser: Martin, Gaven J., McKubre-Jordens, Maarten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 282
container_title Journal of the London Mathematical Society
container_volume 85
creator Martin, Gaven J.
McKubre-Jordens, Maarten
description The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.
doi_str_mv 10.1112/jlms/jdr042
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1112_jlms_jdr042_JLMS0282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS0282</sourcerecordid><originalsourceid>FETCH-LOGICAL-u792-65ed20b723e3d03744ac184ab849d1bf5c8ba099d03d1755bf865ffaf7145b603</originalsourceid><addsrcrecordid>eNot0E1OwzAUBGALgUQprLiALxD6nmPHyRKVfwVYULGNnPqlcZU_xYaoO47AGTkJVGU1ixnN4mPsEuEKEcVi27R-sbUjSHHEZiiTLNJawTGbAQgZJQj6lJ15vwXAGEHM2PsNVf3YmuD6zvPJhZr71jQN-cAncps6kOX5wM0njWZD3Dof-nG_5qaz_MUFv67p5-s77AbiQ01d31JnztlJZRpPF_85Z6u729XyIcpf7x-X13n0oTMRJYqsgFKLmGILsZbSrDGVpkxlZrGs1DotDWTZX2dRK1VWaaKqylQapSoTiOcMD7eTa2hXDKNrzbgrEIo9R7HnKA4cxVP-_AYiFfEvtDtZWw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Martin, Gaven J. ; McKubre-Jordens, Maarten</creator><creatorcontrib>Martin, Gaven J. ; McKubre-Jordens, Maarten</creatorcontrib><description>The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p&lt;1, apart from the identity map (and up to rotation), minimizers never exist. When p=1, we observe Nitsche‐type phenomena; minimizers exist within a range of conformal moduli determined by properties of the weight function and not otherwise. When p&gt;1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdr042</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of the London Mathematical Society, 2012-04, Vol.85 (2), p.282-300</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms%2Fjdr042$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms%2Fjdr042$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Martin, Gaven J.</creatorcontrib><creatorcontrib>McKubre-Jordens, Maarten</creatorcontrib><title>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</title><title>Journal of the London Mathematical Society</title><description>The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p&lt;1, apart from the identity map (and up to rotation), minimizers never exist. When p=1, we observe Nitsche‐type phenomena; minimizers exist within a range of conformal moduli determined by properties of the weight function and not otherwise. When p&gt;1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNot0E1OwzAUBGALgUQprLiALxD6nmPHyRKVfwVYULGNnPqlcZU_xYaoO47AGTkJVGU1ixnN4mPsEuEKEcVi27R-sbUjSHHEZiiTLNJawTGbAQgZJQj6lJ15vwXAGEHM2PsNVf3YmuD6zvPJhZr71jQN-cAncps6kOX5wM0njWZD3Dof-nG_5qaz_MUFv67p5-s77AbiQ01d31JnztlJZRpPF_85Z6u729XyIcpf7x-X13n0oTMRJYqsgFKLmGILsZbSrDGVpkxlZrGs1DotDWTZX2dRK1VWaaKqylQapSoTiOcMD7eTa2hXDKNrzbgrEIo9R7HnKA4cxVP-_AYiFfEvtDtZWw</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Martin, Gaven J.</creator><creator>McKubre-Jordens, Maarten</creator><general>Oxford University Press</general><scope/></search><sort><creationdate>201204</creationdate><title>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</title><author>Martin, Gaven J. ; McKubre-Jordens, Maarten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-u792-65ed20b723e3d03744ac184ab849d1bf5c8ba099d03d1755bf865ffaf7145b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Gaven J.</creatorcontrib><creatorcontrib>McKubre-Jordens, Maarten</creatorcontrib><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Gaven J.</au><au>McKubre-Jordens, Maarten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2012-04</date><risdate>2012</risdate><volume>85</volume><issue>2</issue><spage>282</spage><epage>300</epage><pages>282-300</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p&lt;1, apart from the identity map (and up to rotation), minimizers never exist. When p=1, we observe Nitsche‐type phenomena; minimizers exist within a range of conformal moduli determined by properties of the weight function and not otherwise. When p&gt;1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdr042</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2012-04, Vol.85 (2), p.282-300
issn 0024-6107
1469-7750
language eng
recordid cdi_wiley_primary_10_1112_jlms_jdr042_JLMS0282
source Access via Wiley Online Library; Alma/SFX Local Collection
title Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformations%20with%20smallest%20weighted%20Lp%20average%20distortion%20and%20Nitsche%E2%80%90type%20phenomena&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Martin,%20Gaven%20J.&rft.date=2012-04&rft.volume=85&rft.issue=2&rft.spage=282&rft.epage=300&rft.pages=282-300&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdr042&rft_dat=%3Cwiley%3EJLMS0282%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true