Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena
The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p1 minimizers always exist, regardless of the weight function. Inter...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2012-04, Vol.85 (2), p.282-300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 2 |
container_start_page | 282 |
container_title | Journal of the London Mathematical Society |
container_volume | 85 |
creator | Martin, Gaven J. McKubre-Jordens, Maarten |
description | The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena. |
doi_str_mv | 10.1112/jlms/jdr042 |
format | Article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1112_jlms_jdr042_JLMS0282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS0282</sourcerecordid><originalsourceid>FETCH-LOGICAL-u792-65ed20b723e3d03744ac184ab849d1bf5c8ba099d03d1755bf865ffaf7145b603</originalsourceid><addsrcrecordid>eNot0E1OwzAUBGALgUQprLiALxD6nmPHyRKVfwVYULGNnPqlcZU_xYaoO47AGTkJVGU1ixnN4mPsEuEKEcVi27R-sbUjSHHEZiiTLNJawTGbAQgZJQj6lJ15vwXAGEHM2PsNVf3YmuD6zvPJhZr71jQN-cAncps6kOX5wM0njWZD3Dof-nG_5qaz_MUFv67p5-s77AbiQ01d31JnztlJZRpPF_85Z6u729XyIcpf7x-X13n0oTMRJYqsgFKLmGILsZbSrDGVpkxlZrGs1DotDWTZX2dRK1VWaaKqylQapSoTiOcMD7eTa2hXDKNrzbgrEIo9R7HnKA4cxVP-_AYiFfEvtDtZWw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Martin, Gaven J. ; McKubre-Jordens, Maarten</creator><creatorcontrib>Martin, Gaven J. ; McKubre-Jordens, Maarten</creatorcontrib><description>The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p<1, apart from the identity map (and up to rotation), minimizers never exist. When p=1, we observe Nitsche‐type phenomena; minimizers exist within a range of conformal moduli determined by properties of the weight function and not otherwise. When p>1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdr042</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of the London Mathematical Society, 2012-04, Vol.85 (2), p.282-300</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms%2Fjdr042$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms%2Fjdr042$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Martin, Gaven J.</creatorcontrib><creatorcontrib>McKubre-Jordens, Maarten</creatorcontrib><title>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</title><title>Journal of the London Mathematical Society</title><description>The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p<1, apart from the identity map (and up to rotation), minimizers never exist. When p=1, we observe Nitsche‐type phenomena; minimizers exist within a range of conformal moduli determined by properties of the weight function and not otherwise. When p>1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNot0E1OwzAUBGALgUQprLiALxD6nmPHyRKVfwVYULGNnPqlcZU_xYaoO47AGTkJVGU1ixnN4mPsEuEKEcVi27R-sbUjSHHEZiiTLNJawTGbAQgZJQj6lJ15vwXAGEHM2PsNVf3YmuD6zvPJhZr71jQN-cAncps6kOX5wM0njWZD3Dof-nG_5qaz_MUFv67p5-s77AbiQ01d31JnztlJZRpPF_85Z6u729XyIcpf7x-X13n0oTMRJYqsgFKLmGILsZbSrDGVpkxlZrGs1DotDWTZX2dRK1VWaaKqylQapSoTiOcMD7eTa2hXDKNrzbgrEIo9R7HnKA4cxVP-_AYiFfEvtDtZWw</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Martin, Gaven J.</creator><creator>McKubre-Jordens, Maarten</creator><general>Oxford University Press</general><scope/></search><sort><creationdate>201204</creationdate><title>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</title><author>Martin, Gaven J. ; McKubre-Jordens, Maarten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-u792-65ed20b723e3d03744ac184ab849d1bf5c8ba099d03d1755bf865ffaf7145b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Gaven J.</creatorcontrib><creatorcontrib>McKubre-Jordens, Maarten</creatorcontrib><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Gaven J.</au><au>McKubre-Jordens, Maarten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2012-04</date><risdate>2012</risdate><volume>85</volume><issue>2</issue><spage>282</spage><epage>300</epage><pages>282-300</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>The existence and uniqueness properties for extremal mappings with smallest weighted Lp distortion between annuli and the related Grötzsch‐type problems are discussed. An interesting critical phase‐type phenomenon is observed. When p<1, apart from the identity map (and up to rotation), minimizers never exist. When p=1, we observe Nitsche‐type phenomena; minimizers exist within a range of conformal moduli determined by properties of the weight function and not otherwise. When p>1 minimizers always exist, regardless of the weight function. Interpreting the weight function as a density or ‘thickness profile’ leads to interesting models for the deformation of highly elastic bodies and tearing‐type phenomena.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdr042</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2012-04, Vol.85 (2), p.282-300 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_wiley_primary_10_1112_jlms_jdr042_JLMS0282 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
title | Deformations with smallest weighted Lp average distortion and Nitsche‐type phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformations%20with%20smallest%20weighted%20Lp%20average%20distortion%20and%20Nitsche%E2%80%90type%20phenomena&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Martin,%20Gaven%20J.&rft.date=2012-04&rft.volume=85&rft.issue=2&rft.spage=282&rft.epage=300&rft.pages=282-300&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdr042&rft_dat=%3Cwiley%3EJLMS0282%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |