Automorphisms of minimal entropy on supersingular K3 surfaces

In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2018-04, Vol.97 (2), p.282-305
Hauptverfasser: Brandhorst, Simon, González‐Alonso, Víctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 2
container_start_page 282
container_title Journal of the London Mathematical Society
container_volume 97
creator Brandhorst, Simon
González‐Alonso, Víctor
description In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.
doi_str_mv 10.1112/jlms.12109
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1112_jlms_12109_JLMS12109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3049-1b2167c8d6e24061481644436d408cebdeaf69a9cc2a31e9f25d32aabe16df7b3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0EEqGw4Qv8Ayn32q4TL1hUFe8gFsDacvyAVHnJboTy97SF1YxmcTSHkGuEJSKym23bpSUyBHVCMhRS5UWxglOSATCRS4TinFyktAVAjsAycruedkM3xPG7SV2iQ6Bd0zedaanvd3EYZzr0NE2jj6npv6bWRPrC90MMxvp0Sc6CaZO_-s8F-by_-9g85tXbw9NmXeWWg1A51gxlYUsnPRMgUZQohRBcOgGl9bXzJkhllLXMcPQqsJXjzJjao3ShqPmC4B_3p2n9rMe4fxhnjaAP1vpgrY_W-rl6fT82_guvqU3U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automorphisms of minimal entropy on supersingular K3 surfaces</title><source>Wiley-Blackwell Journals</source><creator>Brandhorst, Simon ; González‐Alonso, Víctor</creator><creatorcontrib>Brandhorst, Simon ; González‐Alonso, Víctor</creatorcontrib><description>In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12109</identifier><language>eng</language><subject>14G17 (secondary) ; 14J28 (primary) ; 14J50</subject><ispartof>Journal of the London Mathematical Society, 2018-04, Vol.97 (2), p.282-305</ispartof><rights>2018 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3049-1b2167c8d6e24061481644436d408cebdeaf69a9cc2a31e9f25d32aabe16df7b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12109$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12109$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Brandhorst, Simon</creatorcontrib><creatorcontrib>González‐Alonso, Víctor</creatorcontrib><title>Automorphisms of minimal entropy on supersingular K3 surfaces</title><title>Journal of the London Mathematical Society</title><description>In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.</description><subject>14G17 (secondary)</subject><subject>14J28 (primary)</subject><subject>14J50</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj8tOwzAURC0EEqGw4Qv8Ayn32q4TL1hUFe8gFsDacvyAVHnJboTy97SF1YxmcTSHkGuEJSKym23bpSUyBHVCMhRS5UWxglOSATCRS4TinFyktAVAjsAycruedkM3xPG7SV2iQ6Bd0zedaanvd3EYZzr0NE2jj6npv6bWRPrC90MMxvp0Sc6CaZO_-s8F-by_-9g85tXbw9NmXeWWg1A51gxlYUsnPRMgUZQohRBcOgGl9bXzJkhllLXMcPQqsJXjzJjao3ShqPmC4B_3p2n9rMe4fxhnjaAP1vpgrY_W-rl6fT82_guvqU3U</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Brandhorst, Simon</creator><creator>González‐Alonso, Víctor</creator><scope/></search><sort><creationdate>201804</creationdate><title>Automorphisms of minimal entropy on supersingular K3 surfaces</title><author>Brandhorst, Simon ; González‐Alonso, Víctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3049-1b2167c8d6e24061481644436d408cebdeaf69a9cc2a31e9f25d32aabe16df7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14G17 (secondary)</topic><topic>14J28 (primary)</topic><topic>14J50</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandhorst, Simon</creatorcontrib><creatorcontrib>González‐Alonso, Víctor</creatorcontrib><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandhorst, Simon</au><au>González‐Alonso, Víctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automorphisms of minimal entropy on supersingular K3 surfaces</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2018-04</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>282</spage><epage>305</epage><pages>282-305</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.</abstract><doi>10.1112/jlms.12109</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2018-04, Vol.97 (2), p.282-305
issn 0024-6107
1469-7750
language eng
recordid cdi_wiley_primary_10_1112_jlms_12109_JLMS12109
source Wiley-Blackwell Journals
subjects 14G17 (secondary)
14J28 (primary)
14J50
title Automorphisms of minimal entropy on supersingular K3 surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automorphisms%20of%20minimal%20entropy%20on%20supersingular%20K3%20surfaces&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Brandhorst,%20Simon&rft.date=2018-04&rft.volume=97&rft.issue=2&rft.spage=282&rft.epage=305&rft.pages=282-305&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12109&rft_dat=%3Cwiley%3EJLMS12109%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true