Automorphisms of minimal entropy on supersingular K3 surfaces
In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in charac...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2018-04, Vol.97 (2), p.282-305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 2 |
container_start_page | 282 |
container_title | Journal of the London Mathematical Society |
container_volume | 97 |
creator | Brandhorst, Simon González‐Alonso, Víctor |
description | In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone. |
doi_str_mv | 10.1112/jlms.12109 |
format | Article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1112_jlms_12109_JLMS12109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3049-1b2167c8d6e24061481644436d408cebdeaf69a9cc2a31e9f25d32aabe16df7b3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0EEqGw4Qv8Ayn32q4TL1hUFe8gFsDacvyAVHnJboTy97SF1YxmcTSHkGuEJSKym23bpSUyBHVCMhRS5UWxglOSATCRS4TinFyktAVAjsAycruedkM3xPG7SV2iQ6Bd0zedaanvd3EYZzr0NE2jj6npv6bWRPrC90MMxvp0Sc6CaZO_-s8F-by_-9g85tXbw9NmXeWWg1A51gxlYUsnPRMgUZQohRBcOgGl9bXzJkhllLXMcPQqsJXjzJjao3ShqPmC4B_3p2n9rMe4fxhnjaAP1vpgrY_W-rl6fT82_guvqU3U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automorphisms of minimal entropy on supersingular K3 surfaces</title><source>Wiley-Blackwell Journals</source><creator>Brandhorst, Simon ; González‐Alonso, Víctor</creator><creatorcontrib>Brandhorst, Simon ; González‐Alonso, Víctor</creatorcontrib><description>In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12109</identifier><language>eng</language><subject>14G17 (secondary) ; 14J28 (primary) ; 14J50</subject><ispartof>Journal of the London Mathematical Society, 2018-04, Vol.97 (2), p.282-305</ispartof><rights>2018 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3049-1b2167c8d6e24061481644436d408cebdeaf69a9cc2a31e9f25d32aabe16df7b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12109$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12109$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Brandhorst, Simon</creatorcontrib><creatorcontrib>González‐Alonso, Víctor</creatorcontrib><title>Automorphisms of minimal entropy on supersingular K3 surfaces</title><title>Journal of the London Mathematical Society</title><description>In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.</description><subject>14G17 (secondary)</subject><subject>14J28 (primary)</subject><subject>14J50</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj8tOwzAURC0EEqGw4Qv8Ayn32q4TL1hUFe8gFsDacvyAVHnJboTy97SF1YxmcTSHkGuEJSKym23bpSUyBHVCMhRS5UWxglOSATCRS4TinFyktAVAjsAycruedkM3xPG7SV2iQ6Bd0zedaanvd3EYZzr0NE2jj6npv6bWRPrC90MMxvp0Sc6CaZO_-s8F-by_-9g85tXbw9NmXeWWg1A51gxlYUsnPRMgUZQohRBcOgGl9bXzJkhllLXMcPQqsJXjzJjao3ShqPmC4B_3p2n9rMe4fxhnjaAP1vpgrY_W-rl6fT82_guvqU3U</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Brandhorst, Simon</creator><creator>González‐Alonso, Víctor</creator><scope/></search><sort><creationdate>201804</creationdate><title>Automorphisms of minimal entropy on supersingular K3 surfaces</title><author>Brandhorst, Simon ; González‐Alonso, Víctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3049-1b2167c8d6e24061481644436d408cebdeaf69a9cc2a31e9f25d32aabe16df7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14G17 (secondary)</topic><topic>14J28 (primary)</topic><topic>14J50</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandhorst, Simon</creatorcontrib><creatorcontrib>González‐Alonso, Víctor</creatorcontrib><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandhorst, Simon</au><au>González‐Alonso, Víctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automorphisms of minimal entropy on supersingular K3 surfaces</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2018-04</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>282</spage><epage>305</epage><pages>282-305</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a supersingular K3 surface in positive characteristic. As test case it is proved that logλd, where λd is the minimal Salem number of degree d, is realized in characteristic 5 if and only if d⩽22 is even and d≠18. In the complex projective setting we settle the case of entropy logλ12, left open by McMullen, by giving the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, that is, preserves a chamber of the positive cone.</abstract><doi>10.1112/jlms.12109</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2018-04, Vol.97 (2), p.282-305 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_wiley_primary_10_1112_jlms_12109_JLMS12109 |
source | Wiley-Blackwell Journals |
subjects | 14G17 (secondary) 14J28 (primary) 14J50 |
title | Automorphisms of minimal entropy on supersingular K3 surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automorphisms%20of%20minimal%20entropy%20on%20supersingular%20K3%20surfaces&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Brandhorst,%20Simon&rft.date=2018-04&rft.volume=97&rft.issue=2&rft.spage=282&rft.epage=305&rft.pages=282-305&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12109&rft_dat=%3Cwiley%3EJLMS12109%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |