Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population
Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to iden...
Gespeichert in:
Veröffentlicht in: | Plant breeding 2020-06, Vol.139 (3), p.626-638 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 638 |
---|---|
container_issue | 3 |
container_start_page | 626 |
container_title | Plant breeding |
container_volume | 139 |
creator | Dhungana, Sanjeev K. Kim, Hong‐Sik Kang, Beom‐Kyu Seo, Jeong‐Hyun Kim, Hyun‐Tae Shin, Sang‐Ouk Park, Chang‐Hwan Kwak, Do‐Yeon Morris, Bradley |
description | Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes. |
doi_str_mv | 10.1111/pbr.12790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1111_pbr_12790_PBR12790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416852258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvhwDewxAmhtGMnjpMjrPgnVYJW5Rw5znhxlfUE26HaQ7873m7FDQlfxiP_xu_pDWOvBZyLci6WMZ4LqXt4wjaiqfsKlKyfsg0I3Ve9asRz9iKlWzj2td6w-6vVhOyzyf438hyNz3wm6_neLIsPO-4ocjcTTccm04zRBIvcZG4CRxPnA99Fuss_ecpmh5wcT3QYsbxGtLQffSgC3Icx4sRnH5AvtKxzEaTwkj1zZk746rGesR-fPt5sv1SX3z5_3b6_rKzsNVTN1LVQO6tc03d9W9eTaaVs1ehAtJOwagIFTaO1Rj11TisJEo1y1oJUuhf1GXtz-neJ9GvFlIdbWmMokoNsRNspKVVXqLcnykZKKaIbluj3Jh4GAcMx3aGkOzykW9h3J_YOR3LJeiyp_OUBiiGQumvKDY763f_T24dtUNjSGnIZvXgc9TMe_u1o-P7h-mTtDw-hnZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416852258</pqid></control><display><type>article</type><title>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Dhungana, Sanjeev K. ; Kim, Hong‐Sik ; Kang, Beom‐Kyu ; Seo, Jeong‐Hyun ; Kim, Hyun‐Tae ; Shin, Sang‐Ouk ; Park, Chang‐Hwan ; Kwak, Do‐Yeon ; Morris, Bradley</creator><contributor>Morris, Bradley</contributor><creatorcontrib>Dhungana, Sanjeev K. ; Kim, Hong‐Sik ; Kang, Beom‐Kyu ; Seo, Jeong‐Hyun ; Kim, Hyun‐Tae ; Shin, Sang‐Ouk ; Park, Chang‐Hwan ; Kwak, Do‐Yeon ; Morris, Bradley ; Morris, Bradley</creatorcontrib><description>Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.12790</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Agriculture ; Agronomy ; Biotechnology & Applied Microbiology ; Chlorophyll ; chlorophyll content ; Chromosomes ; early growth stage ; Flooding ; flooding tolerance ; Floods ; Gene mapping ; Growth stage ; Inbreeding ; Life Sciences & Biomedicine ; Mapping ; Phenotypic variations ; Plant Sciences ; QTL mapping ; Quantitative trait loci ; Rainy season ; Science & Technology ; shoot dry weight ; soybean ; Soybeans</subject><ispartof>Plant breeding, 2020-06, Vol.139 (3), p.626-638</ispartof><rights>2019 The Authors. published by Blackwell Verlag GmbH</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000500278400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</citedby><cites>FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</cites><orcidid>0000-0002-2495-9078 ; 0000-0003-0341-499X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.12790$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.12790$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids></links><search><contributor>Morris, Bradley</contributor><creatorcontrib>Dhungana, Sanjeev K.</creatorcontrib><creatorcontrib>Kim, Hong‐Sik</creatorcontrib><creatorcontrib>Kang, Beom‐Kyu</creatorcontrib><creatorcontrib>Seo, Jeong‐Hyun</creatorcontrib><creatorcontrib>Kim, Hyun‐Tae</creatorcontrib><creatorcontrib>Shin, Sang‐Ouk</creatorcontrib><creatorcontrib>Park, Chang‐Hwan</creatorcontrib><creatorcontrib>Kwak, Do‐Yeon</creatorcontrib><creatorcontrib>Morris, Bradley</creatorcontrib><title>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</title><title>Plant breeding</title><addtitle>PLANT BREEDING</addtitle><description>Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.</description><subject>Agriculture</subject><subject>Agronomy</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Chlorophyll</subject><subject>chlorophyll content</subject><subject>Chromosomes</subject><subject>early growth stage</subject><subject>Flooding</subject><subject>flooding tolerance</subject><subject>Floods</subject><subject>Gene mapping</subject><subject>Growth stage</subject><subject>Inbreeding</subject><subject>Life Sciences & Biomedicine</subject><subject>Mapping</subject><subject>Phenotypic variations</subject><subject>Plant Sciences</subject><subject>QTL mapping</subject><subject>Quantitative trait loci</subject><subject>Rainy season</subject><subject>Science & Technology</subject><subject>shoot dry weight</subject><subject>soybean</subject><subject>Soybeans</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkU9v1DAQxS0EEkvhwDewxAmhtGMnjpMjrPgnVYJW5Rw5znhxlfUE26HaQ7873m7FDQlfxiP_xu_pDWOvBZyLci6WMZ4LqXt4wjaiqfsKlKyfsg0I3Ve9asRz9iKlWzj2td6w-6vVhOyzyf438hyNz3wm6_neLIsPO-4ocjcTTccm04zRBIvcZG4CRxPnA99Fuss_ecpmh5wcT3QYsbxGtLQffSgC3Icx4sRnH5AvtKxzEaTwkj1zZk746rGesR-fPt5sv1SX3z5_3b6_rKzsNVTN1LVQO6tc03d9W9eTaaVs1ehAtJOwagIFTaO1Rj11TisJEo1y1oJUuhf1GXtz-neJ9GvFlIdbWmMokoNsRNspKVVXqLcnykZKKaIbluj3Jh4GAcMx3aGkOzykW9h3J_YOR3LJeiyp_OUBiiGQumvKDY763f_T24dtUNjSGnIZvXgc9TMe_u1o-P7h-mTtDw-hnZs</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Dhungana, Sanjeev K.</creator><creator>Kim, Hong‐Sik</creator><creator>Kang, Beom‐Kyu</creator><creator>Seo, Jeong‐Hyun</creator><creator>Kim, Hyun‐Tae</creator><creator>Shin, Sang‐Ouk</creator><creator>Park, Chang‐Hwan</creator><creator>Kwak, Do‐Yeon</creator><creator>Morris, Bradley</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2495-9078</orcidid><orcidid>https://orcid.org/0000-0003-0341-499X</orcidid></search><sort><creationdate>202006</creationdate><title>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</title><author>Dhungana, Sanjeev K. ; Kim, Hong‐Sik ; Kang, Beom‐Kyu ; Seo, Jeong‐Hyun ; Kim, Hyun‐Tae ; Shin, Sang‐Ouk ; Park, Chang‐Hwan ; Kwak, Do‐Yeon ; Morris, Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Agronomy</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Chlorophyll</topic><topic>chlorophyll content</topic><topic>Chromosomes</topic><topic>early growth stage</topic><topic>Flooding</topic><topic>flooding tolerance</topic><topic>Floods</topic><topic>Gene mapping</topic><topic>Growth stage</topic><topic>Inbreeding</topic><topic>Life Sciences & Biomedicine</topic><topic>Mapping</topic><topic>Phenotypic variations</topic><topic>Plant Sciences</topic><topic>QTL mapping</topic><topic>Quantitative trait loci</topic><topic>Rainy season</topic><topic>Science & Technology</topic><topic>shoot dry weight</topic><topic>soybean</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhungana, Sanjeev K.</creatorcontrib><creatorcontrib>Kim, Hong‐Sik</creatorcontrib><creatorcontrib>Kang, Beom‐Kyu</creatorcontrib><creatorcontrib>Seo, Jeong‐Hyun</creatorcontrib><creatorcontrib>Kim, Hyun‐Tae</creatorcontrib><creatorcontrib>Shin, Sang‐Ouk</creatorcontrib><creatorcontrib>Park, Chang‐Hwan</creatorcontrib><creatorcontrib>Kwak, Do‐Yeon</creatorcontrib><creatorcontrib>Morris, Bradley</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhungana, Sanjeev K.</au><au>Kim, Hong‐Sik</au><au>Kang, Beom‐Kyu</au><au>Seo, Jeong‐Hyun</au><au>Kim, Hyun‐Tae</au><au>Shin, Sang‐Ouk</au><au>Park, Chang‐Hwan</au><au>Kwak, Do‐Yeon</au><au>Morris, Bradley</au><au>Morris, Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</atitle><jtitle>Plant breeding</jtitle><stitle>PLANT BREEDING</stitle><date>2020-06</date><risdate>2020</risdate><volume>139</volume><issue>3</issue><spage>626</spage><epage>638</epage><pages>626-638</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/pbr.12790</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2495-9078</orcidid><orcidid>https://orcid.org/0000-0003-0341-499X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-9541 |
ispartof | Plant breeding, 2020-06, Vol.139 (3), p.626-638 |
issn | 0179-9541 1439-0523 |
language | eng |
recordid | cdi_wiley_primary_10_1111_pbr_12790_PBR12790 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Agriculture Agronomy Biotechnology & Applied Microbiology Chlorophyll chlorophyll content Chromosomes early growth stage Flooding flooding tolerance Floods Gene mapping Growth stage Inbreeding Life Sciences & Biomedicine Mapping Phenotypic variations Plant Sciences QTL mapping Quantitative trait loci Rainy season Science & Technology shoot dry weight soybean Soybeans |
title | Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20trait%20loci%20mapping%20for%20flooding%20tolerance%20at%20an%20early%20growth%20stage%20of%20soybean%20recombinant%20inbred%20line%20population&rft.jtitle=Plant%20breeding&rft.au=Dhungana,%20Sanjeev%20K.&rft.date=2020-06&rft.volume=139&rft.issue=3&rft.spage=626&rft.epage=638&rft.pages=626-638&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.12790&rft_dat=%3Cproquest_wiley%3E2416852258%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416852258&rft_id=info:pmid/&rfr_iscdi=true |