Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population

Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant breeding 2020-06, Vol.139 (3), p.626-638
Hauptverfasser: Dhungana, Sanjeev K., Kim, Hong‐Sik, Kang, Beom‐Kyu, Seo, Jeong‐Hyun, Kim, Hyun‐Tae, Shin, Sang‐Ouk, Park, Chang‐Hwan, Kwak, Do‐Yeon, Morris, Bradley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 638
container_issue 3
container_start_page 626
container_title Plant breeding
container_volume 139
creator Dhungana, Sanjeev K.
Kim, Hong‐Sik
Kang, Beom‐Kyu
Seo, Jeong‐Hyun
Kim, Hyun‐Tae
Shin, Sang‐Ouk
Park, Chang‐Hwan
Kwak, Do‐Yeon
Morris, Bradley
description Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.
doi_str_mv 10.1111/pbr.12790
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1111_pbr_12790_PBR12790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416852258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvhwDewxAmhtGMnjpMjrPgnVYJW5Rw5znhxlfUE26HaQ7873m7FDQlfxiP_xu_pDWOvBZyLci6WMZ4LqXt4wjaiqfsKlKyfsg0I3Ve9asRz9iKlWzj2td6w-6vVhOyzyf438hyNz3wm6_neLIsPO-4ocjcTTccm04zRBIvcZG4CRxPnA99Fuss_ecpmh5wcT3QYsbxGtLQffSgC3Icx4sRnH5AvtKxzEaTwkj1zZk746rGesR-fPt5sv1SX3z5_3b6_rKzsNVTN1LVQO6tc03d9W9eTaaVs1ehAtJOwagIFTaO1Rj11TisJEo1y1oJUuhf1GXtz-neJ9GvFlIdbWmMokoNsRNspKVVXqLcnykZKKaIbluj3Jh4GAcMx3aGkOzykW9h3J_YOR3LJeiyp_OUBiiGQumvKDY763f_T24dtUNjSGnIZvXgc9TMe_u1o-P7h-mTtDw-hnZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416852258</pqid></control><display><type>article</type><title>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Dhungana, Sanjeev K. ; Kim, Hong‐Sik ; Kang, Beom‐Kyu ; Seo, Jeong‐Hyun ; Kim, Hyun‐Tae ; Shin, Sang‐Ouk ; Park, Chang‐Hwan ; Kwak, Do‐Yeon ; Morris, Bradley</creator><contributor>Morris, Bradley</contributor><creatorcontrib>Dhungana, Sanjeev K. ; Kim, Hong‐Sik ; Kang, Beom‐Kyu ; Seo, Jeong‐Hyun ; Kim, Hyun‐Tae ; Shin, Sang‐Ouk ; Park, Chang‐Hwan ; Kwak, Do‐Yeon ; Morris, Bradley ; Morris, Bradley</creatorcontrib><description>Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.12790</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Agriculture ; Agronomy ; Biotechnology &amp; Applied Microbiology ; Chlorophyll ; chlorophyll content ; Chromosomes ; early growth stage ; Flooding ; flooding tolerance ; Floods ; Gene mapping ; Growth stage ; Inbreeding ; Life Sciences &amp; Biomedicine ; Mapping ; Phenotypic variations ; Plant Sciences ; QTL mapping ; Quantitative trait loci ; Rainy season ; Science &amp; Technology ; shoot dry weight ; soybean ; Soybeans</subject><ispartof>Plant breeding, 2020-06, Vol.139 (3), p.626-638</ispartof><rights>2019 The Authors. published by Blackwell Verlag GmbH</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000500278400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</citedby><cites>FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</cites><orcidid>0000-0002-2495-9078 ; 0000-0003-0341-499X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.12790$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.12790$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids></links><search><contributor>Morris, Bradley</contributor><creatorcontrib>Dhungana, Sanjeev K.</creatorcontrib><creatorcontrib>Kim, Hong‐Sik</creatorcontrib><creatorcontrib>Kang, Beom‐Kyu</creatorcontrib><creatorcontrib>Seo, Jeong‐Hyun</creatorcontrib><creatorcontrib>Kim, Hyun‐Tae</creatorcontrib><creatorcontrib>Shin, Sang‐Ouk</creatorcontrib><creatorcontrib>Park, Chang‐Hwan</creatorcontrib><creatorcontrib>Kwak, Do‐Yeon</creatorcontrib><creatorcontrib>Morris, Bradley</creatorcontrib><title>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</title><title>Plant breeding</title><addtitle>PLANT BREEDING</addtitle><description>Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.</description><subject>Agriculture</subject><subject>Agronomy</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Chlorophyll</subject><subject>chlorophyll content</subject><subject>Chromosomes</subject><subject>early growth stage</subject><subject>Flooding</subject><subject>flooding tolerance</subject><subject>Floods</subject><subject>Gene mapping</subject><subject>Growth stage</subject><subject>Inbreeding</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mapping</subject><subject>Phenotypic variations</subject><subject>Plant Sciences</subject><subject>QTL mapping</subject><subject>Quantitative trait loci</subject><subject>Rainy season</subject><subject>Science &amp; Technology</subject><subject>shoot dry weight</subject><subject>soybean</subject><subject>Soybeans</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkU9v1DAQxS0EEkvhwDewxAmhtGMnjpMjrPgnVYJW5Rw5znhxlfUE26HaQ7873m7FDQlfxiP_xu_pDWOvBZyLci6WMZ4LqXt4wjaiqfsKlKyfsg0I3Ve9asRz9iKlWzj2td6w-6vVhOyzyf438hyNz3wm6_neLIsPO-4ocjcTTccm04zRBIvcZG4CRxPnA99Fuss_ecpmh5wcT3QYsbxGtLQffSgC3Icx4sRnH5AvtKxzEaTwkj1zZk746rGesR-fPt5sv1SX3z5_3b6_rKzsNVTN1LVQO6tc03d9W9eTaaVs1ehAtJOwagIFTaO1Rj11TisJEo1y1oJUuhf1GXtz-neJ9GvFlIdbWmMokoNsRNspKVVXqLcnykZKKaIbluj3Jh4GAcMx3aGkOzykW9h3J_YOR3LJeiyp_OUBiiGQumvKDY763f_T24dtUNjSGnIZvXgc9TMe_u1o-P7h-mTtDw-hnZs</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Dhungana, Sanjeev K.</creator><creator>Kim, Hong‐Sik</creator><creator>Kang, Beom‐Kyu</creator><creator>Seo, Jeong‐Hyun</creator><creator>Kim, Hyun‐Tae</creator><creator>Shin, Sang‐Ouk</creator><creator>Park, Chang‐Hwan</creator><creator>Kwak, Do‐Yeon</creator><creator>Morris, Bradley</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2495-9078</orcidid><orcidid>https://orcid.org/0000-0003-0341-499X</orcidid></search><sort><creationdate>202006</creationdate><title>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</title><author>Dhungana, Sanjeev K. ; Kim, Hong‐Sik ; Kang, Beom‐Kyu ; Seo, Jeong‐Hyun ; Kim, Hyun‐Tae ; Shin, Sang‐Ouk ; Park, Chang‐Hwan ; Kwak, Do‐Yeon ; Morris, Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-4d8603fc5f4989633da62265bf016d1c5d05044777e7d8f75202ea5fcc0257913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Agronomy</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Chlorophyll</topic><topic>chlorophyll content</topic><topic>Chromosomes</topic><topic>early growth stage</topic><topic>Flooding</topic><topic>flooding tolerance</topic><topic>Floods</topic><topic>Gene mapping</topic><topic>Growth stage</topic><topic>Inbreeding</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mapping</topic><topic>Phenotypic variations</topic><topic>Plant Sciences</topic><topic>QTL mapping</topic><topic>Quantitative trait loci</topic><topic>Rainy season</topic><topic>Science &amp; Technology</topic><topic>shoot dry weight</topic><topic>soybean</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhungana, Sanjeev K.</creatorcontrib><creatorcontrib>Kim, Hong‐Sik</creatorcontrib><creatorcontrib>Kang, Beom‐Kyu</creatorcontrib><creatorcontrib>Seo, Jeong‐Hyun</creatorcontrib><creatorcontrib>Kim, Hyun‐Tae</creatorcontrib><creatorcontrib>Shin, Sang‐Ouk</creatorcontrib><creatorcontrib>Park, Chang‐Hwan</creatorcontrib><creatorcontrib>Kwak, Do‐Yeon</creatorcontrib><creatorcontrib>Morris, Bradley</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhungana, Sanjeev K.</au><au>Kim, Hong‐Sik</au><au>Kang, Beom‐Kyu</au><au>Seo, Jeong‐Hyun</au><au>Kim, Hyun‐Tae</au><au>Shin, Sang‐Ouk</au><au>Park, Chang‐Hwan</au><au>Kwak, Do‐Yeon</au><au>Morris, Bradley</au><au>Morris, Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population</atitle><jtitle>Plant breeding</jtitle><stitle>PLANT BREEDING</stitle><date>2020-06</date><risdate>2020</risdate><volume>139</volume><issue>3</issue><spage>626</spage><epage>638</epage><pages>626-638</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/pbr.12790</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2495-9078</orcidid><orcidid>https://orcid.org/0000-0003-0341-499X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-9541
ispartof Plant breeding, 2020-06, Vol.139 (3), p.626-638
issn 0179-9541
1439-0523
language eng
recordid cdi_wiley_primary_10_1111_pbr_12790_PBR12790
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Agriculture
Agronomy
Biotechnology & Applied Microbiology
Chlorophyll
chlorophyll content
Chromosomes
early growth stage
Flooding
flooding tolerance
Floods
Gene mapping
Growth stage
Inbreeding
Life Sciences & Biomedicine
Mapping
Phenotypic variations
Plant Sciences
QTL mapping
Quantitative trait loci
Rainy season
Science & Technology
shoot dry weight
soybean
Soybeans
title Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20trait%20loci%20mapping%20for%20flooding%20tolerance%20at%20an%20early%20growth%20stage%20of%20soybean%20recombinant%20inbred%20line%20population&rft.jtitle=Plant%20breeding&rft.au=Dhungana,%20Sanjeev%20K.&rft.date=2020-06&rft.volume=139&rft.issue=3&rft.spage=626&rft.epage=638&rft.pages=626-638&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.12790&rft_dat=%3Cproquest_wiley%3E2416852258%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416852258&rft_id=info:pmid/&rfr_iscdi=true