GmMs1 encodes a kinesin‐like protein essential for male fertility in soybean (Glycine max L.)

The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male‐sterile mutant ms‐1, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative plant biology 2021-06, Vol.63 (6), p.1054-1064
Hauptverfasser: Nadeem, Muhammad, Chen, Andong, Hong, Huilong, Li, Dongdong, Li, Jiajia, Zhao, Duo, Wang, Wei, Wang, Xiaobo, Qiu, Lijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 6
container_start_page 1054
container_title Journal of integrative plant biology
container_volume 63
creator Nadeem, Muhammad
Chen, Andong
Hong, Huilong
Li, Dongdong
Li, Jiajia
Zhao, Duo
Wang, Wei
Wang, Xiaobo
Qiu, Lijuan
description The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male‐sterile mutant ms‐1, which has been widely used for recurrent selection in soybean breeding programs. We initially delimited the ms1 locus to a 16.15 kb region on chromosome 13, based on SLAF_BSA sequencing followed by genotyping of an F2 population segregating for the locus. Compared with the same region in fertile plants, the mutant region lacks a sequence of approximately 38.7 kb containing five protein‐coding genes, including an ortholog of the kinesin‐like protein gene NACK2, named GmMs1. The GmMs1 knockout plants generated via CRISPR/Cas‐mediated gene editing displayed a complete male‐sterile phenotype. Metabolic profiling showed that fertile anthers accumulated starch and sucrose normally, whereas sterile anthers had higher anthocyanin levels and lower flavonoid levels and lower antioxidant enzyme activities. These results provide insights into the molecular mechanisms governing male sterility and demonstrate that GmMs1 could be used to create male‐sterile lines through targeted mutagenesis. These findings pave the way for designing seed production technology and an intelligent male‐sterile line system to utilize heterosis in soybean. The soybean male‐sterile mutant ms1 has been widely used for recurrent selection in soybean breeding programs; cloning of ms1 provided insight into the molecular mechanisms governing male sterility and paved the way for designing an intelligent male‐sterile line system to utilize heterosis in soybean.
doi_str_mv 10.1111/jipb.13110
format Article
fullrecord <record><control><sourceid>wanfang_jour_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1111_jipb_13110_JIPB13110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zwxb202106007</wanfj_id><sourcerecordid>zwxb202106007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4230-63369f7c446c2e643db0f2fc18656ef6e880dc64a7bf29ed6e290d55463d21d53</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EoqVw4QGQJYQErbKM_8RJjrCCpWgRHOBsOc4YeZu1t3FWbTjxCH1GngQvuy03hC8zkn_z-ZvPhDxlMGP5vF75TTtjgjG4R45ZJWVRNdDcz72qeNFAxY_Io5RWAKIGxR-SIyEaJZRix0Qv1p8Soxhs7DBRQy98wOTDr583vb9AuhniiD5QTAnD6E1PXRzo2vRIHQ6j7_040Xyf4tSiCfTlop9slsjINV3OXj0mD5zpEz451BPy7f27r_MPxfLz4nz-ZllYyQUUSgjVuMpKqSxHJUXXguPOslqVCp3CuobOKmmq1vEGO4W8ga4spRIdZ10pTsiLve6VCc6E73oVt0PIL-ofV9ctB85AAVSZe77n8mKXW0zjX5CXkkvRcLajTveUHWJKAzq9GfzaDJNmoHeZ613m-k_mGX52kNy2a-zu0NuQM1AfvGEbXbI-p413GAAoJSB_Ve6gmvvRjD6GedyGMY-e_f9optmB9j1O__CsP55_ebt3_xt6xKuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542439217</pqid></control><display><type>article</type><title>GmMs1 encodes a kinesin‐like protein essential for male fertility in soybean (Glycine max L.)</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Nadeem, Muhammad ; Chen, Andong ; Hong, Huilong ; Li, Dongdong ; Li, Jiajia ; Zhao, Duo ; Wang, Wei ; Wang, Xiaobo ; Qiu, Lijuan</creator><creatorcontrib>Nadeem, Muhammad ; Chen, Andong ; Hong, Huilong ; Li, Dongdong ; Li, Jiajia ; Zhao, Duo ; Wang, Wei ; Wang, Xiaobo ; Qiu, Lijuan</creatorcontrib><description>The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male‐sterile mutant ms‐1, which has been widely used for recurrent selection in soybean breeding programs. We initially delimited the ms1 locus to a 16.15 kb region on chromosome 13, based on SLAF_BSA sequencing followed by genotyping of an F2 population segregating for the locus. Compared with the same region in fertile plants, the mutant region lacks a sequence of approximately 38.7 kb containing five protein‐coding genes, including an ortholog of the kinesin‐like protein gene NACK2, named GmMs1. The GmMs1 knockout plants generated via CRISPR/Cas‐mediated gene editing displayed a complete male‐sterile phenotype. Metabolic profiling showed that fertile anthers accumulated starch and sucrose normally, whereas sterile anthers had higher anthocyanin levels and lower flavonoid levels and lower antioxidant enzyme activities. These results provide insights into the molecular mechanisms governing male sterility and demonstrate that GmMs1 could be used to create male‐sterile lines through targeted mutagenesis. These findings pave the way for designing seed production technology and an intelligent male‐sterile line system to utilize heterosis in soybean. The soybean male‐sterile mutant ms1 has been widely used for recurrent selection in soybean breeding programs; cloning of ms1 provided insight into the molecular mechanisms governing male sterility and paved the way for designing an intelligent male‐sterile line system to utilize heterosis in soybean.</description><identifier>ISSN: 1672-9072</identifier><identifier>EISSN: 1744-7909</identifier><identifier>DOI: 10.1111/jipb.13110</identifier><identifier>PMID: 33963661</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Anthers ; Anthocyanins ; Antioxidants ; Biochemistry &amp; Molecular Biology ; Chromosome 13 ; Cloning ; CRISPR ; Crop yield ; Enzymatic activity ; Fertility ; Flavonoids ; Genetic modification ; Genotyping ; Glycine max ; Glycine max - genetics ; Glycine max - metabolism ; Heterosis ; Kinesin ; Life Sciences &amp; Biomedicine ; Loci ; Male sterility ; Males ; metabolome sequencing ; Molecular modelling ; Mutants ; nuclear male sterility ; Phenotypes ; Plant Breeding ; Plant Infertility - genetics ; Plant Infertility - physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Proteins ; Science &amp; Technology ; Site-directed mutagenesis ; soybean ; Soybeans ; Starch ; Sucrose ; third generation sequencing ; Transcriptome - genetics ; transcriptome sequencing</subject><ispartof>Journal of integrative plant biology, 2021-06, Vol.63 (6), p.1054-1064</ispartof><rights>2020 The Authors. Published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences</rights><rights>2020 The Authors. Journal of Integrative Plant Biology Published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663067200007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4230-63369f7c446c2e643db0f2fc18656ef6e880dc64a7bf29ed6e290d55463d21d53</citedby><cites>FETCH-LOGICAL-c4230-63369f7c446c2e643db0f2fc18656ef6e880dc64a7bf29ed6e290d55463d21d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zwxb/zwxb.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjipb.13110$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjipb.13110$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33963661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadeem, Muhammad</creatorcontrib><creatorcontrib>Chen, Andong</creatorcontrib><creatorcontrib>Hong, Huilong</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Li, Jiajia</creatorcontrib><creatorcontrib>Zhao, Duo</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Xiaobo</creatorcontrib><creatorcontrib>Qiu, Lijuan</creatorcontrib><title>GmMs1 encodes a kinesin‐like protein essential for male fertility in soybean (Glycine max L.)</title><title>Journal of integrative plant biology</title><addtitle>J INTEGR PLANT BIOL</addtitle><addtitle>J Integr Plant Biol</addtitle><description>The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male‐sterile mutant ms‐1, which has been widely used for recurrent selection in soybean breeding programs. We initially delimited the ms1 locus to a 16.15 kb region on chromosome 13, based on SLAF_BSA sequencing followed by genotyping of an F2 population segregating for the locus. Compared with the same region in fertile plants, the mutant region lacks a sequence of approximately 38.7 kb containing five protein‐coding genes, including an ortholog of the kinesin‐like protein gene NACK2, named GmMs1. The GmMs1 knockout plants generated via CRISPR/Cas‐mediated gene editing displayed a complete male‐sterile phenotype. Metabolic profiling showed that fertile anthers accumulated starch and sucrose normally, whereas sterile anthers had higher anthocyanin levels and lower flavonoid levels and lower antioxidant enzyme activities. These results provide insights into the molecular mechanisms governing male sterility and demonstrate that GmMs1 could be used to create male‐sterile lines through targeted mutagenesis. These findings pave the way for designing seed production technology and an intelligent male‐sterile line system to utilize heterosis in soybean. The soybean male‐sterile mutant ms1 has been widely used for recurrent selection in soybean breeding programs; cloning of ms1 provided insight into the molecular mechanisms governing male sterility and paved the way for designing an intelligent male‐sterile line system to utilize heterosis in soybean.</description><subject>Anthers</subject><subject>Anthocyanins</subject><subject>Antioxidants</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chromosome 13</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Crop yield</subject><subject>Enzymatic activity</subject><subject>Fertility</subject><subject>Flavonoids</subject><subject>Genetic modification</subject><subject>Genotyping</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>Glycine max - metabolism</subject><subject>Heterosis</subject><subject>Kinesin</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Loci</subject><subject>Male sterility</subject><subject>Males</subject><subject>metabolome sequencing</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>nuclear male sterility</subject><subject>Phenotypes</subject><subject>Plant Breeding</subject><subject>Plant Infertility - genetics</subject><subject>Plant Infertility - physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Proteins</subject><subject>Science &amp; Technology</subject><subject>Site-directed mutagenesis</subject><subject>soybean</subject><subject>Soybeans</subject><subject>Starch</subject><subject>Sucrose</subject><subject>third generation sequencing</subject><subject>Transcriptome - genetics</subject><subject>transcriptome sequencing</subject><issn>1672-9072</issn><issn>1744-7909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EoqVw4QGQJYQErbKM_8RJjrCCpWgRHOBsOc4YeZu1t3FWbTjxCH1GngQvuy03hC8zkn_z-ZvPhDxlMGP5vF75TTtjgjG4R45ZJWVRNdDcz72qeNFAxY_Io5RWAKIGxR-SIyEaJZRix0Qv1p8Soxhs7DBRQy98wOTDr583vb9AuhniiD5QTAnD6E1PXRzo2vRIHQ6j7_040Xyf4tSiCfTlop9slsjINV3OXj0mD5zpEz451BPy7f27r_MPxfLz4nz-ZllYyQUUSgjVuMpKqSxHJUXXguPOslqVCp3CuobOKmmq1vEGO4W8ga4spRIdZ10pTsiLve6VCc6E73oVt0PIL-ofV9ctB85AAVSZe77n8mKXW0zjX5CXkkvRcLajTveUHWJKAzq9GfzaDJNmoHeZ613m-k_mGX52kNy2a-zu0NuQM1AfvGEbXbI-p413GAAoJSB_Ve6gmvvRjD6GedyGMY-e_f9optmB9j1O__CsP55_ebt3_xt6xKuM</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Nadeem, Muhammad</creator><creator>Chen, Andong</creator><creator>Hong, Huilong</creator><creator>Li, Dongdong</creator><creator>Li, Jiajia</creator><creator>Zhao, Duo</creator><creator>Wang, Wei</creator><creator>Wang, Xiaobo</creator><creator>Qiu, Lijuan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>School of Agronomy,Anhui Agricultural University,Hefei 230036,China%The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement(MOA),Institute of Crop Sciences,The Chinese Academy of Agricultural Sciences,Beijing 100081,China</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>202106</creationdate><title>GmMs1 encodes a kinesin‐like protein essential for male fertility in soybean (Glycine max L.)</title><author>Nadeem, Muhammad ; Chen, Andong ; Hong, Huilong ; Li, Dongdong ; Li, Jiajia ; Zhao, Duo ; Wang, Wei ; Wang, Xiaobo ; Qiu, Lijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4230-63369f7c446c2e643db0f2fc18656ef6e880dc64a7bf29ed6e290d55463d21d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anthers</topic><topic>Anthocyanins</topic><topic>Antioxidants</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chromosome 13</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Crop yield</topic><topic>Enzymatic activity</topic><topic>Fertility</topic><topic>Flavonoids</topic><topic>Genetic modification</topic><topic>Genotyping</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>Glycine max - metabolism</topic><topic>Heterosis</topic><topic>Kinesin</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Loci</topic><topic>Male sterility</topic><topic>Males</topic><topic>metabolome sequencing</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>nuclear male sterility</topic><topic>Phenotypes</topic><topic>Plant Breeding</topic><topic>Plant Infertility - genetics</topic><topic>Plant Infertility - physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Proteins</topic><topic>Science &amp; Technology</topic><topic>Site-directed mutagenesis</topic><topic>soybean</topic><topic>Soybeans</topic><topic>Starch</topic><topic>Sucrose</topic><topic>third generation sequencing</topic><topic>Transcriptome - genetics</topic><topic>transcriptome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadeem, Muhammad</creatorcontrib><creatorcontrib>Chen, Andong</creatorcontrib><creatorcontrib>Hong, Huilong</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Li, Jiajia</creatorcontrib><creatorcontrib>Zhao, Duo</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Xiaobo</creatorcontrib><creatorcontrib>Qiu, Lijuan</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of integrative plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadeem, Muhammad</au><au>Chen, Andong</au><au>Hong, Huilong</au><au>Li, Dongdong</au><au>Li, Jiajia</au><au>Zhao, Duo</au><au>Wang, Wei</au><au>Wang, Xiaobo</au><au>Qiu, Lijuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GmMs1 encodes a kinesin‐like protein essential for male fertility in soybean (Glycine max L.)</atitle><jtitle>Journal of integrative plant biology</jtitle><stitle>J INTEGR PLANT BIOL</stitle><addtitle>J Integr Plant Biol</addtitle><date>2021-06</date><risdate>2021</risdate><volume>63</volume><issue>6</issue><spage>1054</spage><epage>1064</epage><pages>1054-1064</pages><issn>1672-9072</issn><eissn>1744-7909</eissn><abstract>The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male‐sterile mutant ms‐1, which has been widely used for recurrent selection in soybean breeding programs. We initially delimited the ms1 locus to a 16.15 kb region on chromosome 13, based on SLAF_BSA sequencing followed by genotyping of an F2 population segregating for the locus. Compared with the same region in fertile plants, the mutant region lacks a sequence of approximately 38.7 kb containing five protein‐coding genes, including an ortholog of the kinesin‐like protein gene NACK2, named GmMs1. The GmMs1 knockout plants generated via CRISPR/Cas‐mediated gene editing displayed a complete male‐sterile phenotype. Metabolic profiling showed that fertile anthers accumulated starch and sucrose normally, whereas sterile anthers had higher anthocyanin levels and lower flavonoid levels and lower antioxidant enzyme activities. These results provide insights into the molecular mechanisms governing male sterility and demonstrate that GmMs1 could be used to create male‐sterile lines through targeted mutagenesis. These findings pave the way for designing seed production technology and an intelligent male‐sterile line system to utilize heterosis in soybean. The soybean male‐sterile mutant ms1 has been widely used for recurrent selection in soybean breeding programs; cloning of ms1 provided insight into the molecular mechanisms governing male sterility and paved the way for designing an intelligent male‐sterile line system to utilize heterosis in soybean.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>33963661</pmid><doi>10.1111/jipb.13110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-9072
ispartof Journal of integrative plant biology, 2021-06, Vol.63 (6), p.1054-1064
issn 1672-9072
1744-7909
language eng
recordid cdi_wiley_primary_10_1111_jipb_13110_JIPB13110
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Anthers
Anthocyanins
Antioxidants
Biochemistry & Molecular Biology
Chromosome 13
Cloning
CRISPR
Crop yield
Enzymatic activity
Fertility
Flavonoids
Genetic modification
Genotyping
Glycine max
Glycine max - genetics
Glycine max - metabolism
Heterosis
Kinesin
Life Sciences & Biomedicine
Loci
Male sterility
Males
metabolome sequencing
Molecular modelling
Mutants
nuclear male sterility
Phenotypes
Plant Breeding
Plant Infertility - genetics
Plant Infertility - physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Proteins
Science & Technology
Site-directed mutagenesis
soybean
Soybeans
Starch
Sucrose
third generation sequencing
Transcriptome - genetics
transcriptome sequencing
title GmMs1 encodes a kinesin‐like protein essential for male fertility in soybean (Glycine max L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GmMs1%20encodes%20a%20kinesin%E2%80%90like%20protein%20essential%20for%20male%20fertility%20in%20soybean%20(Glycine%20max%20L.)&rft.jtitle=Journal%20of%20integrative%20plant%20biology&rft.au=Nadeem,%20Muhammad&rft.date=2021-06&rft.volume=63&rft.issue=6&rft.spage=1054&rft.epage=1064&rft.pages=1054-1064&rft.issn=1672-9072&rft.eissn=1744-7909&rft_id=info:doi/10.1111/jipb.13110&rft_dat=%3Cwanfang_jour_wiley%3Ezwxb202106007%3C/wanfang_jour_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542439217&rft_id=info:pmid/33963661&rft_wanfj_id=zwxb202106007&rfr_iscdi=true