HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions

To study the dynamics of infection processes, it is common to manually enumerate imaging‐based infection assays. However, manual counting of events from imaging data is biased, error‐prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular microbiology 2021-07, Vol.23 (7), p.e13349-n/a, Article 13349
Hauptverfasser: Fisch, Daniel, Evans, Robert, Clough, Barbara, Byrne, Sophie K., Channell, Will M., Dockterman, Jacob, Frickel, Eva‐Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e13349
container_title Cellular microbiology
container_volume 23
creator Fisch, Daniel
Evans, Robert
Clough, Barbara
Byrne, Sophie K.
Channell, Will M.
Dockterman, Jacob
Frickel, Eva‐Maria
description To study the dynamics of infection processes, it is common to manually enumerate imaging‐based infection assays. However, manual counting of events from imaging data is biased, error‐prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state‐of‐the‐art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans. HRMAn 2.0 is an artificial intelligence‐driven, high‐throughput image analysis tool to study host‐pathogen interactions. It uses AI for object detection and phenotypical classification. HRMAn 2.0 has been validated for several different intracellular pathogens and is easily adaptable for new pathogens and experimental questions.
doi_str_mv 10.1111/cmi.13349
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1111_cmi_13349_CMI13349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544060870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-221cfcdb3da80b015d96643e15c0d3e1dfdf396f58cc4ad5d5293f3164ddd1a93</originalsourceid><addsrcrecordid>eNqN0c1u1DAQAGALgWgpHHgBFIkLFdrtjO1kk96qqNBKLUgIzpHjH-oqiRc7AfbWR0DqG_ZJmP1hD0hI-DKW_M1oPMPYS4Q50jnRvZ-jELJ6xA5RFnyWl5w_3t9RHrBnKd0CYLFAfMoOhKgEcF4esv7i0_XZkPE5nGYf7M_x4e7XVzvYqEYfhkzF0TuvveoyP4y26zw9avtwd2-i_24JDKpbJZ8yF2LWxqBMdhMSVblfqvEmkN4kRqXX9dJz9sSpLtkXu3jEvrw7_1xfzK4-vr-sz65mWpRlNeMctdOmFUaV0ALmpioKKSzmGgwF44wTVeHyUmupTG5yXgknsJDGGFSVOGJvtnWXMXybbBqb3idN_avBhik1POdQLvgCJdHXf9HbMEX61lpJCQVBIHW8VTqGlKJ1zTL6XsVVg9Csd9DQDprNDsi-2lWc2t6avfwzdAJvt-CHbYNL2q9numcAUOQIIDjdAEmX_69rP242V4dpGCn1ZJfqO7v6d8tNfX257f03JXi0Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544060870</pqid></control><display><type>article</type><title>HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Fisch, Daniel ; Evans, Robert ; Clough, Barbara ; Byrne, Sophie K. ; Channell, Will M. ; Dockterman, Jacob ; Frickel, Eva‐Maria</creator><creatorcontrib>Fisch, Daniel ; Evans, Robert ; Clough, Barbara ; Byrne, Sophie K. ; Channell, Will M. ; Dockterman, Jacob ; Frickel, Eva‐Maria</creatorcontrib><description>To study the dynamics of infection processes, it is common to manually enumerate imaging‐based infection assays. However, manual counting of events from imaging data is biased, error‐prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state‐of‐the‐art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans. HRMAn 2.0 is an artificial intelligence‐driven, high‐throughput image analysis tool to study host‐pathogen interactions. It uses AI for object detection and phenotypical classification. HRMAn 2.0 has been validated for several different intracellular pathogens and is easily adaptable for new pathogens and experimental questions.</description><identifier>ISSN: 1462-5814</identifier><identifier>EISSN: 1462-5822</identifier><identifier>DOI: 10.1111/cmi.13349</identifier><identifier>PMID: 33930228</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Cell activation ; Cell Biology ; Cell Line, Tumor ; Chlamydia Infections - diagnostic imaging ; Cryptococcosis - diagnostic imaging ; Fungi ; Host-Pathogen Interactions ; host‐pathogen interaction ; Humans ; Image analysis ; Image processing ; Image Processing, Computer-Assisted - methods ; Infections ; Learning algorithms ; Life Sciences &amp; Biomedicine ; Machine learning ; Microbiology ; Pathogens ; Salmonella ; Science &amp; Technology ; Sexually transmitted diseases ; STD ; Toxoplasmosis - diagnostic imaging</subject><ispartof>Cellular microbiology, 2021-07, Vol.23 (7), p.e13349-n/a, Article 13349</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Cellular Microbiology published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000651003200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3889-221cfcdb3da80b015d96643e15c0d3e1dfdf396f58cc4ad5d5293f3164ddd1a93</citedby><cites>FETCH-LOGICAL-c3889-221cfcdb3da80b015d96643e15c0d3e1dfdf396f58cc4ad5d5293f3164ddd1a93</cites><orcidid>0000-0002-8155-0367 ; 0000-0002-9515-3442 ; 0000-0002-3235-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcmi.13349$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcmi.13349$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,1435,27931,27932,39265,45581,45582,46416,46840</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33930228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisch, Daniel</creatorcontrib><creatorcontrib>Evans, Robert</creatorcontrib><creatorcontrib>Clough, Barbara</creatorcontrib><creatorcontrib>Byrne, Sophie K.</creatorcontrib><creatorcontrib>Channell, Will M.</creatorcontrib><creatorcontrib>Dockterman, Jacob</creatorcontrib><creatorcontrib>Frickel, Eva‐Maria</creatorcontrib><title>HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions</title><title>Cellular microbiology</title><addtitle>CELL MICROBIOL</addtitle><addtitle>Cell Microbiol</addtitle><description>To study the dynamics of infection processes, it is common to manually enumerate imaging‐based infection assays. However, manual counting of events from imaging data is biased, error‐prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state‐of‐the‐art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans. HRMAn 2.0 is an artificial intelligence‐driven, high‐throughput image analysis tool to study host‐pathogen interactions. It uses AI for object detection and phenotypical classification. HRMAn 2.0 has been validated for several different intracellular pathogens and is easily adaptable for new pathogens and experimental questions.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chlamydia Infections - diagnostic imaging</subject><subject>Cryptococcosis - diagnostic imaging</subject><subject>Fungi</subject><subject>Host-Pathogen Interactions</subject><subject>host‐pathogen interaction</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Infections</subject><subject>Learning algorithms</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine learning</subject><subject>Microbiology</subject><subject>Pathogens</subject><subject>Salmonella</subject><subject>Science &amp; Technology</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Toxoplasmosis - diagnostic imaging</subject><issn>1462-5814</issn><issn>1462-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c1u1DAQAGALgWgpHHgBFIkLFdrtjO1kk96qqNBKLUgIzpHjH-oqiRc7AfbWR0DqG_ZJmP1hD0hI-DKW_M1oPMPYS4Q50jnRvZ-jELJ6xA5RFnyWl5w_3t9RHrBnKd0CYLFAfMoOhKgEcF4esv7i0_XZkPE5nGYf7M_x4e7XVzvYqEYfhkzF0TuvveoyP4y26zw9avtwd2-i_24JDKpbJZ8yF2LWxqBMdhMSVblfqvEmkN4kRqXX9dJz9sSpLtkXu3jEvrw7_1xfzK4-vr-sz65mWpRlNeMctdOmFUaV0ALmpioKKSzmGgwF44wTVeHyUmupTG5yXgknsJDGGFSVOGJvtnWXMXybbBqb3idN_avBhik1POdQLvgCJdHXf9HbMEX61lpJCQVBIHW8VTqGlKJ1zTL6XsVVg9Csd9DQDprNDsi-2lWc2t6avfwzdAJvt-CHbYNL2q9numcAUOQIIDjdAEmX_69rP242V4dpGCn1ZJfqO7v6d8tNfX257f03JXi0Tg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Fisch, Daniel</creator><creator>Evans, Robert</creator><creator>Clough, Barbara</creator><creator>Byrne, Sophie K.</creator><creator>Channell, Will M.</creator><creator>Dockterman, Jacob</creator><creator>Frickel, Eva‐Maria</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Hindawi</general><general>Hindawi Limited</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8155-0367</orcidid><orcidid>https://orcid.org/0000-0002-9515-3442</orcidid><orcidid>https://orcid.org/0000-0002-3235-6170</orcidid></search><sort><creationdate>202107</creationdate><title>HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions</title><author>Fisch, Daniel ; Evans, Robert ; Clough, Barbara ; Byrne, Sophie K. ; Channell, Will M. ; Dockterman, Jacob ; Frickel, Eva‐Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-221cfcdb3da80b015d96643e15c0d3e1dfdf396f58cc4ad5d5293f3164ddd1a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chlamydia Infections - diagnostic imaging</topic><topic>Cryptococcosis - diagnostic imaging</topic><topic>Fungi</topic><topic>Host-Pathogen Interactions</topic><topic>host‐pathogen interaction</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Infections</topic><topic>Learning algorithms</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine learning</topic><topic>Microbiology</topic><topic>Pathogens</topic><topic>Salmonella</topic><topic>Science &amp; Technology</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Toxoplasmosis - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisch, Daniel</creatorcontrib><creatorcontrib>Evans, Robert</creatorcontrib><creatorcontrib>Clough, Barbara</creatorcontrib><creatorcontrib>Byrne, Sophie K.</creatorcontrib><creatorcontrib>Channell, Will M.</creatorcontrib><creatorcontrib>Dockterman, Jacob</creatorcontrib><creatorcontrib>Frickel, Eva‐Maria</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisch, Daniel</au><au>Evans, Robert</au><au>Clough, Barbara</au><au>Byrne, Sophie K.</au><au>Channell, Will M.</au><au>Dockterman, Jacob</au><au>Frickel, Eva‐Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions</atitle><jtitle>Cellular microbiology</jtitle><stitle>CELL MICROBIOL</stitle><addtitle>Cell Microbiol</addtitle><date>2021-07</date><risdate>2021</risdate><volume>23</volume><issue>7</issue><spage>e13349</spage><epage>n/a</epage><pages>e13349-n/a</pages><artnum>13349</artnum><issn>1462-5814</issn><eissn>1462-5822</eissn><abstract>To study the dynamics of infection processes, it is common to manually enumerate imaging‐based infection assays. However, manual counting of events from imaging data is biased, error‐prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state‐of‐the‐art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans. HRMAn 2.0 is an artificial intelligence‐driven, high‐throughput image analysis tool to study host‐pathogen interactions. It uses AI for object detection and phenotypical classification. HRMAn 2.0 has been validated for several different intracellular pathogens and is easily adaptable for new pathogens and experimental questions.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33930228</pmid><doi>10.1111/cmi.13349</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8155-0367</orcidid><orcidid>https://orcid.org/0000-0002-9515-3442</orcidid><orcidid>https://orcid.org/0000-0002-3235-6170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-5814
ispartof Cellular microbiology, 2021-07, Vol.23 (7), p.e13349-n/a, Article 13349
issn 1462-5814
1462-5822
language eng
recordid cdi_wiley_primary_10_1111_cmi_13349_CMI13349
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Artificial Intelligence
Cell activation
Cell Biology
Cell Line, Tumor
Chlamydia Infections - diagnostic imaging
Cryptococcosis - diagnostic imaging
Fungi
Host-Pathogen Interactions
host‐pathogen interaction
Humans
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Infections
Learning algorithms
Life Sciences & Biomedicine
Machine learning
Microbiology
Pathogens
Salmonella
Science & Technology
Sexually transmitted diseases
STD
Toxoplasmosis - diagnostic imaging
title HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HRMAn%202.0:%20Next%E2%80%90generation%20artificial%20intelligence%E2%80%93driven%20analysis%20for%20broad%20host%E2%80%93pathogen%20interactions&rft.jtitle=Cellular%20microbiology&rft.au=Fisch,%20Daniel&rft.date=2021-07&rft.volume=23&rft.issue=7&rft.spage=e13349&rft.epage=n/a&rft.pages=e13349-n/a&rft.artnum=13349&rft.issn=1462-5814&rft.eissn=1462-5822&rft_id=info:doi/10.1111/cmi.13349&rft_dat=%3Cproquest_wiley%3E2544060870%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544060870&rft_id=info:pmid/33930228&rfr_iscdi=true