Distinguishing primary from secondary Δ4-3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis
Summary Objective Deficiency of Δ4‐3‐oxosteroid 5β‐reductase (5β‐reductase), a bile acid synthesis disorder, presents findings of neonatal cholestasis and hyper‐3‐oxo‐Δ4 bile aciduria. The 5β‐reductase enzyme participates in not only bile acid synthesis but also hepatic steroid metabolism. Deficienc...
Gespeichert in:
Veröffentlicht in: | Clinical endocrinology (Oxford) 2015-03, Vol.82 (3), p.346-351 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 3 |
container_start_page | 346 |
container_title | Clinical endocrinology (Oxford) |
container_volume | 82 |
creator | Yanagi, Tadahiro Mizuochi, Tatsuki Homma, Keiko Ueki, Isao Seki, Yoshitaka Hasegawa, Tomonobu Takei, Hajime Nittono, Hiroshi Kurosawa, Takao Matsuishi, Toyojiro Kimura, Akihiko |
description | Summary
Objective
Deficiency of Δ4‐3‐oxosteroid 5β‐reductase (5β‐reductase), a bile acid synthesis disorder, presents findings of neonatal cholestasis and hyper‐3‐oxo‐Δ4 bile aciduria. The 5β‐reductase enzyme participates in not only bile acid synthesis but also hepatic steroid metabolism. Deficiency of 5β‐reductase includes 2 types: primary deficiency, with an SRD5B1 gene mutation; and secondary deficiency, lacking a mutation. Secondary deficiency is caused by fulminant liver failure from various aetiologies including neonatal hemochromatosis (NH). Distinguishing primary from secondary deficiency based on γ‐glutamyltransferase (GGT), serum total bile acids (TBA), and urinary bile acid analysis using gas chromatography–mass spectroscopy (GC‐MS) is very difficult. SRD5B1 gene analysis is the only reliable method. We examined urinary steroid analysis as a way to distinguish primary from secondary 5β‐reductase deficiency.
Design, patients and measurements
We examined 12 patients with cholestatic jaundice, normal or slightly elevated GGT, and hyper‐3‐oxo‐Δ4 bile aciduria using urinary steroid analysis by GC‐MS of both cortisol and cortisone compounds, such as 5β‐tetrahydrocortisol (5β‐THF) and 5β‐tetrahydrocortisone (5β‐THE). Patients previously were diagnosed with primary 5β‐reductase deficiency (n = 3), deficiency secondary to NH (n = 3) and deficiency secondary to other liver disorders (n = 6).
Results
Urinary steroid analysis in 3 primary deficiency and 3 NH patients showed low 5β‐THE and elevated 5α/5β‐THE ratios, making distinction difficult without also considering the clinical course and abdominal magnetic resonance imaging (MRI) findings, such as a very low signal intensity in liver and/or pancreas, especially in T2‐weighted images. In the six patients with other secondary deficiencies, urinary 5β‐THF and 5α/5β‐THF differed from those in primary deficiency (P |
doi_str_mv | 10.1111/cen.12596 |
format | Article |
fullrecord | <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1111_cen_12596_CEN12596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEN12596</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2476-aed433bbd53e32cfa8f7490dcb00533107ef17fa1e72d1bf2a976f1088b4fc683</originalsourceid><addsrcrecordid>eNo9kMtOAjEUhhujiYgufIMuNbHQTqftsMQB8UIwQYzLptOLVmGGTCEyiY_hk_ggPJPDRc_mP2fx_cn5ADgnuEXqaWubt0jEOvwANAjlDEURZ4eggSnGCHMeH4OTEN4xxizBogG-ej4sfP669OGtDjgv_UyVFXRlMYPB6iI3m3P9HSOKilURFrYsvIFs_YNKa5Z6oYKFF0_jHrsmV7D7MCY9cgmNdV57m-sKZhVclj7ftPzBKlfTKvhwCo6cmgZ7ts8meL7pT9JbNHwc3KXdIfJRLDhS1sSUZplh1NJIO5U4EXew0Vn9BaUEC-uIcIpYERmSuUh1BHcEJ0kWO80T2gTtXe-nn9pK7n-UBMuNM1k7k1tnMu2PtktNoB1R27Grf0KVH5ILKph8GQ3k5J4OcDoeyZT-Arqycmw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distinguishing primary from secondary Δ4-3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yanagi, Tadahiro ; Mizuochi, Tatsuki ; Homma, Keiko ; Ueki, Isao ; Seki, Yoshitaka ; Hasegawa, Tomonobu ; Takei, Hajime ; Nittono, Hiroshi ; Kurosawa, Takao ; Matsuishi, Toyojiro ; Kimura, Akihiko</creator><creatorcontrib>Yanagi, Tadahiro ; Mizuochi, Tatsuki ; Homma, Keiko ; Ueki, Isao ; Seki, Yoshitaka ; Hasegawa, Tomonobu ; Takei, Hajime ; Nittono, Hiroshi ; Kurosawa, Takao ; Matsuishi, Toyojiro ; Kimura, Akihiko</creatorcontrib><description>Summary
Objective
Deficiency of Δ4‐3‐oxosteroid 5β‐reductase (5β‐reductase), a bile acid synthesis disorder, presents findings of neonatal cholestasis and hyper‐3‐oxo‐Δ4 bile aciduria. The 5β‐reductase enzyme participates in not only bile acid synthesis but also hepatic steroid metabolism. Deficiency of 5β‐reductase includes 2 types: primary deficiency, with an SRD5B1 gene mutation; and secondary deficiency, lacking a mutation. Secondary deficiency is caused by fulminant liver failure from various aetiologies including neonatal hemochromatosis (NH). Distinguishing primary from secondary deficiency based on γ‐glutamyltransferase (GGT), serum total bile acids (TBA), and urinary bile acid analysis using gas chromatography–mass spectroscopy (GC‐MS) is very difficult. SRD5B1 gene analysis is the only reliable method. We examined urinary steroid analysis as a way to distinguish primary from secondary 5β‐reductase deficiency.
Design, patients and measurements
We examined 12 patients with cholestatic jaundice, normal or slightly elevated GGT, and hyper‐3‐oxo‐Δ4 bile aciduria using urinary steroid analysis by GC‐MS of both cortisol and cortisone compounds, such as 5β‐tetrahydrocortisol (5β‐THF) and 5β‐tetrahydrocortisone (5β‐THE). Patients previously were diagnosed with primary 5β‐reductase deficiency (n = 3), deficiency secondary to NH (n = 3) and deficiency secondary to other liver disorders (n = 6).
Results
Urinary steroid analysis in 3 primary deficiency and 3 NH patients showed low 5β‐THE and elevated 5α/5β‐THE ratios, making distinction difficult without also considering the clinical course and abdominal magnetic resonance imaging (MRI) findings, such as a very low signal intensity in liver and/or pancreas, especially in T2‐weighted images. In the six patients with other secondary deficiencies, urinary 5β‐THF and 5α/5β‐THF differed from those in primary deficiency (P < 0·05).
Conclusions
Urinary steroid analysis can distinguish primary and NH‐related deficiencies from other secondary deficiencies.</description><identifier>ISSN: 0300-0664</identifier><identifier>EISSN: 1365-2265</identifier><identifier>DOI: 10.1111/cen.12596</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Clinical endocrinology (Oxford), 2015-03, Vol.82 (3), p.346-351</ispartof><rights>2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcen.12596$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcen.12596$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yanagi, Tadahiro</creatorcontrib><creatorcontrib>Mizuochi, Tatsuki</creatorcontrib><creatorcontrib>Homma, Keiko</creatorcontrib><creatorcontrib>Ueki, Isao</creatorcontrib><creatorcontrib>Seki, Yoshitaka</creatorcontrib><creatorcontrib>Hasegawa, Tomonobu</creatorcontrib><creatorcontrib>Takei, Hajime</creatorcontrib><creatorcontrib>Nittono, Hiroshi</creatorcontrib><creatorcontrib>Kurosawa, Takao</creatorcontrib><creatorcontrib>Matsuishi, Toyojiro</creatorcontrib><creatorcontrib>Kimura, Akihiko</creatorcontrib><title>Distinguishing primary from secondary Δ4-3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis</title><title>Clinical endocrinology (Oxford)</title><addtitle>Clin Endocrinol</addtitle><description>Summary
Objective
Deficiency of Δ4‐3‐oxosteroid 5β‐reductase (5β‐reductase), a bile acid synthesis disorder, presents findings of neonatal cholestasis and hyper‐3‐oxo‐Δ4 bile aciduria. The 5β‐reductase enzyme participates in not only bile acid synthesis but also hepatic steroid metabolism. Deficiency of 5β‐reductase includes 2 types: primary deficiency, with an SRD5B1 gene mutation; and secondary deficiency, lacking a mutation. Secondary deficiency is caused by fulminant liver failure from various aetiologies including neonatal hemochromatosis (NH). Distinguishing primary from secondary deficiency based on γ‐glutamyltransferase (GGT), serum total bile acids (TBA), and urinary bile acid analysis using gas chromatography–mass spectroscopy (GC‐MS) is very difficult. SRD5B1 gene analysis is the only reliable method. We examined urinary steroid analysis as a way to distinguish primary from secondary 5β‐reductase deficiency.
Design, patients and measurements
We examined 12 patients with cholestatic jaundice, normal or slightly elevated GGT, and hyper‐3‐oxo‐Δ4 bile aciduria using urinary steroid analysis by GC‐MS of both cortisol and cortisone compounds, such as 5β‐tetrahydrocortisol (5β‐THF) and 5β‐tetrahydrocortisone (5β‐THE). Patients previously were diagnosed with primary 5β‐reductase deficiency (n = 3), deficiency secondary to NH (n = 3) and deficiency secondary to other liver disorders (n = 6).
Results
Urinary steroid analysis in 3 primary deficiency and 3 NH patients showed low 5β‐THE and elevated 5α/5β‐THE ratios, making distinction difficult without also considering the clinical course and abdominal magnetic resonance imaging (MRI) findings, such as a very low signal intensity in liver and/or pancreas, especially in T2‐weighted images. In the six patients with other secondary deficiencies, urinary 5β‐THF and 5α/5β‐THF differed from those in primary deficiency (P < 0·05).
Conclusions
Urinary steroid analysis can distinguish primary and NH‐related deficiencies from other secondary deficiencies.</description><issn>0300-0664</issn><issn>1365-2265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOAjEUhhujiYgufIMuNbHQTqftsMQB8UIwQYzLptOLVmGGTCEyiY_hk_ggPJPDRc_mP2fx_cn5ADgnuEXqaWubt0jEOvwANAjlDEURZ4eggSnGCHMeH4OTEN4xxizBogG-ej4sfP669OGtDjgv_UyVFXRlMYPB6iI3m3P9HSOKilURFrYsvIFs_YNKa5Z6oYKFF0_jHrsmV7D7MCY9cgmNdV57m-sKZhVclj7ftPzBKlfTKvhwCo6cmgZ7ts8meL7pT9JbNHwc3KXdIfJRLDhS1sSUZplh1NJIO5U4EXew0Vn9BaUEC-uIcIpYERmSuUh1BHcEJ0kWO80T2gTtXe-nn9pK7n-UBMuNM1k7k1tnMu2PtktNoB1R27Grf0KVH5ILKph8GQ3k5J4OcDoeyZT-Arqycmw</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Yanagi, Tadahiro</creator><creator>Mizuochi, Tatsuki</creator><creator>Homma, Keiko</creator><creator>Ueki, Isao</creator><creator>Seki, Yoshitaka</creator><creator>Hasegawa, Tomonobu</creator><creator>Takei, Hajime</creator><creator>Nittono, Hiroshi</creator><creator>Kurosawa, Takao</creator><creator>Matsuishi, Toyojiro</creator><creator>Kimura, Akihiko</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>201503</creationdate><title>Distinguishing primary from secondary Δ4-3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis</title><author>Yanagi, Tadahiro ; Mizuochi, Tatsuki ; Homma, Keiko ; Ueki, Isao ; Seki, Yoshitaka ; Hasegawa, Tomonobu ; Takei, Hajime ; Nittono, Hiroshi ; Kurosawa, Takao ; Matsuishi, Toyojiro ; Kimura, Akihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2476-aed433bbd53e32cfa8f7490dcb00533107ef17fa1e72d1bf2a976f1088b4fc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanagi, Tadahiro</creatorcontrib><creatorcontrib>Mizuochi, Tatsuki</creatorcontrib><creatorcontrib>Homma, Keiko</creatorcontrib><creatorcontrib>Ueki, Isao</creatorcontrib><creatorcontrib>Seki, Yoshitaka</creatorcontrib><creatorcontrib>Hasegawa, Tomonobu</creatorcontrib><creatorcontrib>Takei, Hajime</creatorcontrib><creatorcontrib>Nittono, Hiroshi</creatorcontrib><creatorcontrib>Kurosawa, Takao</creatorcontrib><creatorcontrib>Matsuishi, Toyojiro</creatorcontrib><creatorcontrib>Kimura, Akihiko</creatorcontrib><collection>Istex</collection><jtitle>Clinical endocrinology (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanagi, Tadahiro</au><au>Mizuochi, Tatsuki</au><au>Homma, Keiko</au><au>Ueki, Isao</au><au>Seki, Yoshitaka</au><au>Hasegawa, Tomonobu</au><au>Takei, Hajime</au><au>Nittono, Hiroshi</au><au>Kurosawa, Takao</au><au>Matsuishi, Toyojiro</au><au>Kimura, Akihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing primary from secondary Δ4-3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis</atitle><jtitle>Clinical endocrinology (Oxford)</jtitle><addtitle>Clin Endocrinol</addtitle><date>2015-03</date><risdate>2015</risdate><volume>82</volume><issue>3</issue><spage>346</spage><epage>351</epage><pages>346-351</pages><issn>0300-0664</issn><eissn>1365-2265</eissn><abstract>Summary
Objective
Deficiency of Δ4‐3‐oxosteroid 5β‐reductase (5β‐reductase), a bile acid synthesis disorder, presents findings of neonatal cholestasis and hyper‐3‐oxo‐Δ4 bile aciduria. The 5β‐reductase enzyme participates in not only bile acid synthesis but also hepatic steroid metabolism. Deficiency of 5β‐reductase includes 2 types: primary deficiency, with an SRD5B1 gene mutation; and secondary deficiency, lacking a mutation. Secondary deficiency is caused by fulminant liver failure from various aetiologies including neonatal hemochromatosis (NH). Distinguishing primary from secondary deficiency based on γ‐glutamyltransferase (GGT), serum total bile acids (TBA), and urinary bile acid analysis using gas chromatography–mass spectroscopy (GC‐MS) is very difficult. SRD5B1 gene analysis is the only reliable method. We examined urinary steroid analysis as a way to distinguish primary from secondary 5β‐reductase deficiency.
Design, patients and measurements
We examined 12 patients with cholestatic jaundice, normal or slightly elevated GGT, and hyper‐3‐oxo‐Δ4 bile aciduria using urinary steroid analysis by GC‐MS of both cortisol and cortisone compounds, such as 5β‐tetrahydrocortisol (5β‐THF) and 5β‐tetrahydrocortisone (5β‐THE). Patients previously were diagnosed with primary 5β‐reductase deficiency (n = 3), deficiency secondary to NH (n = 3) and deficiency secondary to other liver disorders (n = 6).
Results
Urinary steroid analysis in 3 primary deficiency and 3 NH patients showed low 5β‐THE and elevated 5α/5β‐THE ratios, making distinction difficult without also considering the clinical course and abdominal magnetic resonance imaging (MRI) findings, such as a very low signal intensity in liver and/or pancreas, especially in T2‐weighted images. In the six patients with other secondary deficiencies, urinary 5β‐THF and 5α/5β‐THF differed from those in primary deficiency (P < 0·05).
Conclusions
Urinary steroid analysis can distinguish primary and NH‐related deficiencies from other secondary deficiencies.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cen.12596</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-0664 |
ispartof | Clinical endocrinology (Oxford), 2015-03, Vol.82 (3), p.346-351 |
issn | 0300-0664 1365-2265 |
language | eng |
recordid | cdi_wiley_primary_10_1111_cen_12596_CEN12596 |
source | Wiley Online Library Journals Frontfile Complete |
title | Distinguishing primary from secondary Δ4-3-oxosteroid 5β-reductase (SRD5B1, AKR1D1) deficiency by urinary steroid analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20primary%20from%20secondary%20%CE%944-3-oxosteroid%205%CE%B2-reductase%20(SRD5B1,%20AKR1D1)%20deficiency%20by%20urinary%20steroid%20analysis&rft.jtitle=Clinical%20endocrinology%20(Oxford)&rft.au=Yanagi,%20Tadahiro&rft.date=2015-03&rft.volume=82&rft.issue=3&rft.spage=346&rft.epage=351&rft.pages=346-351&rft.issn=0300-0664&rft.eissn=1365-2265&rft_id=info:doi/10.1111/cen.12596&rft_dat=%3Cwiley_istex%3ECEN12596%3C/wiley_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |