A multi‐agent system for itinerary suggestion in smart environments

Modern smart environments pose several challenges, among which the design of intelligent algorithms aimed to assist the users. When a variety of points of interest are available, for instance, trajectory recommendations are needed to suggest users the most suitable itineraries based on their interes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CAAI Transactions on Intelligence Technology 2021-12, Vol.6 (4), p.377-393
Hauptverfasser: De Paola, Alessandra, Gaglio, Salvatore, Giammanco, Andrea, Lo Re, Giuseppe, Morana, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 4
container_start_page 377
container_title CAAI Transactions on Intelligence Technology
container_volume 6
creator De Paola, Alessandra
Gaglio, Salvatore
Giammanco, Andrea
Lo Re, Giuseppe
Morana, Marco
description Modern smart environments pose several challenges, among which the design of intelligent algorithms aimed to assist the users. When a variety of points of interest are available, for instance, trajectory recommendations are needed to suggest users the most suitable itineraries based on their interests and contextual constraints. Unfortunately, in many cases, these interests must be explicitly requested and their lack causes the so‐called cold‐start problem. Moreover, lengthy travelling distances and excessive crowdedness of specific points of interest make itinerary planning more difficult. To address these aspects, a multi‐agent itinerary suggestion system that aims at assisting the users in an online and collaborative way is proposed. A profiling agent is responsible for the detection of groups of users whose movements are characterised by similar semantic, spatial and temporal features; then, a recommendation agent leverages contextual information and dynamically associates the current user with the trajectory clusters according to a Multi‐Armed Bandit policy. Framing the trajectory recommendation as a reinforcement learning problem permits to provide high‐quality suggestions while avoiding both cold‐start and preference elicitation issues. The effectiveness of the approach is demonstrated by some deployments in real‐life scenarios, such as smart campuses and theme parks.
doi_str_mv 10.1049/cit2.12056
format Article
fullrecord <record><control><sourceid>gale_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1049_cit2_12056_CIT212056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743986597</galeid><doaj_id>oai_doaj_org_article_c89374e593824ba084def9ac170a3be1</doaj_id><sourcerecordid>A743986597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4426-c5003b9a13d4c9590dac84c08665e8b2fb2cae9bb510033d69cdfc1f741d41af3</originalsourceid><addsrcrecordid>eNqNkc1q3DAURk1poSHJpk9g6K5lpvq37nIwaTsQyCZdC1mWjIaxlEpyy-z6CH3GPEk1cQhdlaKFxOV8lyO-pnmH0RYjBp-ML2SLCeLiVXNBmJAbQgl5_df7bXOd8wEhhAGA0-6iudm183Is_vHXbz3ZUNp8ysXOrYup9cUHm3Q6tXmZJpuLj6H1oc2zTqW14YdPMcw1lK-aN04fs71-vi-bb59v7vuvm9u7L_t-d7sxjBGxMRwhOoDGdGQGOKBRG8kMkkJwKwfiBmK0hWHguIJ0FGBGZ7DrGB4Z1o5eNvt17xj1QT0kX01OKmqvngYxTaqqeXO0ykigHbMcqCRs0Eiy0TrQBndI08Hiuuv9uushxe9L_Z06xCWFqq8oAgwcEQSV2q7UpOtSH1wsSZt6Rjt7E4N1vs53HaMgBYeuBj6sAZNizsm6F02M1Lkmda5JPdVU4Y8r_NMO0WXjbTD2JVB7EkCFYAydK6u0_H-690WfC-vjEkqN4udo1T39Q0n1-3uyyv0BnOK1IQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091950209</pqid></control><display><type>article</type><title>A multi‐agent system for itinerary suggestion in smart environments</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>De Paola, Alessandra ; Gaglio, Salvatore ; Giammanco, Andrea ; Lo Re, Giuseppe ; Morana, Marco</creator><creatorcontrib>De Paola, Alessandra ; Gaglio, Salvatore ; Giammanco, Andrea ; Lo Re, Giuseppe ; Morana, Marco</creatorcontrib><description>Modern smart environments pose several challenges, among which the design of intelligent algorithms aimed to assist the users. When a variety of points of interest are available, for instance, trajectory recommendations are needed to suggest users the most suitable itineraries based on their interests and contextual constraints. Unfortunately, in many cases, these interests must be explicitly requested and their lack causes the so‐called cold‐start problem. Moreover, lengthy travelling distances and excessive crowdedness of specific points of interest make itinerary planning more difficult. To address these aspects, a multi‐agent itinerary suggestion system that aims at assisting the users in an online and collaborative way is proposed. A profiling agent is responsible for the detection of groups of users whose movements are characterised by similar semantic, spatial and temporal features; then, a recommendation agent leverages contextual information and dynamically associates the current user with the trajectory clusters according to a Multi‐Armed Bandit policy. Framing the trajectory recommendation as a reinforcement learning problem permits to provide high‐quality suggestions while avoiding both cold‐start and preference elicitation issues. The effectiveness of the approach is demonstrated by some deployments in real‐life scenarios, such as smart campuses and theme parks.</description><identifier>ISSN: 2468-2322</identifier><identifier>ISSN: 2468-6557</identifier><identifier>EISSN: 2468-2322</identifier><identifier>DOI: 10.1049/cit2.12056</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Algorithms ; artificial intelligence ; Behavior ; Collaboration ; Computer Science ; Computer Science, Artificial Intelligence ; Entropy ; Gaming machines ; Mobility ; multi‐agent systems ; pattern recognition ; Recommender systems ; reinforcement learning ; Science &amp; Technology ; Semantics ; Technology ; Theme parks</subject><ispartof>CAAI Transactions on Intelligence Technology, 2021-12, Vol.6 (4), p.377-393</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000693664400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4426-c5003b9a13d4c9590dac84c08665e8b2fb2cae9bb510033d69cdfc1f741d41af3</citedby><cites>FETCH-LOGICAL-c4426-c5003b9a13d4c9590dac84c08665e8b2fb2cae9bb510033d69cdfc1f741d41af3</cites><orcidid>0000-0002-5963-6236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fcit2.12056$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fcit2.12056$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,1418,2103,2115,11567,27929,27930,39263,45579,45580,46057,46481</link.rule.ids></links><search><creatorcontrib>De Paola, Alessandra</creatorcontrib><creatorcontrib>Gaglio, Salvatore</creatorcontrib><creatorcontrib>Giammanco, Andrea</creatorcontrib><creatorcontrib>Lo Re, Giuseppe</creatorcontrib><creatorcontrib>Morana, Marco</creatorcontrib><title>A multi‐agent system for itinerary suggestion in smart environments</title><title>CAAI Transactions on Intelligence Technology</title><addtitle>CAAI T INTELL TECHNO</addtitle><description>Modern smart environments pose several challenges, among which the design of intelligent algorithms aimed to assist the users. When a variety of points of interest are available, for instance, trajectory recommendations are needed to suggest users the most suitable itineraries based on their interests and contextual constraints. Unfortunately, in many cases, these interests must be explicitly requested and their lack causes the so‐called cold‐start problem. Moreover, lengthy travelling distances and excessive crowdedness of specific points of interest make itinerary planning more difficult. To address these aspects, a multi‐agent itinerary suggestion system that aims at assisting the users in an online and collaborative way is proposed. A profiling agent is responsible for the detection of groups of users whose movements are characterised by similar semantic, spatial and temporal features; then, a recommendation agent leverages contextual information and dynamically associates the current user with the trajectory clusters according to a Multi‐Armed Bandit policy. Framing the trajectory recommendation as a reinforcement learning problem permits to provide high‐quality suggestions while avoiding both cold‐start and preference elicitation issues. The effectiveness of the approach is demonstrated by some deployments in real‐life scenarios, such as smart campuses and theme parks.</description><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>Behavior</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Entropy</subject><subject>Gaming machines</subject><subject>Mobility</subject><subject>multi‐agent systems</subject><subject>pattern recognition</subject><subject>Recommender systems</subject><subject>reinforcement learning</subject><subject>Science &amp; Technology</subject><subject>Semantics</subject><subject>Technology</subject><subject>Theme parks</subject><issn>2468-2322</issn><issn>2468-6557</issn><issn>2468-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1q3DAURk1poSHJpk9g6K5lpvq37nIwaTsQyCZdC1mWjIaxlEpyy-z6CH3GPEk1cQhdlaKFxOV8lyO-pnmH0RYjBp-ML2SLCeLiVXNBmJAbQgl5_df7bXOd8wEhhAGA0-6iudm183Is_vHXbz3ZUNp8ysXOrYup9cUHm3Q6tXmZJpuLj6H1oc2zTqW14YdPMcw1lK-aN04fs71-vi-bb59v7vuvm9u7L_t-d7sxjBGxMRwhOoDGdGQGOKBRG8kMkkJwKwfiBmK0hWHguIJ0FGBGZ7DrGB4Z1o5eNvt17xj1QT0kX01OKmqvngYxTaqqeXO0ykigHbMcqCRs0Eiy0TrQBndI08Hiuuv9uushxe9L_Z06xCWFqq8oAgwcEQSV2q7UpOtSH1wsSZt6Rjt7E4N1vs53HaMgBYeuBj6sAZNizsm6F02M1Lkmda5JPdVU4Y8r_NMO0WXjbTD2JVB7EkCFYAydK6u0_H-690WfC-vjEkqN4udo1T39Q0n1-3uyyv0BnOK1IQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>De Paola, Alessandra</creator><creator>Gaglio, Salvatore</creator><creator>Giammanco, Andrea</creator><creator>Lo Re, Giuseppe</creator><creator>Morana, Marco</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5963-6236</orcidid></search><sort><creationdate>202112</creationdate><title>A multi‐agent system for itinerary suggestion in smart environments</title><author>De Paola, Alessandra ; Gaglio, Salvatore ; Giammanco, Andrea ; Lo Re, Giuseppe ; Morana, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4426-c5003b9a13d4c9590dac84c08665e8b2fb2cae9bb510033d69cdfc1f741d41af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>Behavior</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Entropy</topic><topic>Gaming machines</topic><topic>Mobility</topic><topic>multi‐agent systems</topic><topic>pattern recognition</topic><topic>Recommender systems</topic><topic>reinforcement learning</topic><topic>Science &amp; Technology</topic><topic>Semantics</topic><topic>Technology</topic><topic>Theme parks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Paola, Alessandra</creatorcontrib><creatorcontrib>Gaglio, Salvatore</creatorcontrib><creatorcontrib>Giammanco, Andrea</creatorcontrib><creatorcontrib>Lo Re, Giuseppe</creatorcontrib><creatorcontrib>Morana, Marco</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>CAAI Transactions on Intelligence Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Paola, Alessandra</au><au>Gaglio, Salvatore</au><au>Giammanco, Andrea</au><au>Lo Re, Giuseppe</au><au>Morana, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi‐agent system for itinerary suggestion in smart environments</atitle><jtitle>CAAI Transactions on Intelligence Technology</jtitle><stitle>CAAI T INTELL TECHNO</stitle><date>2021-12</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>377</spage><epage>393</epage><pages>377-393</pages><issn>2468-2322</issn><issn>2468-6557</issn><eissn>2468-2322</eissn><abstract>Modern smart environments pose several challenges, among which the design of intelligent algorithms aimed to assist the users. When a variety of points of interest are available, for instance, trajectory recommendations are needed to suggest users the most suitable itineraries based on their interests and contextual constraints. Unfortunately, in many cases, these interests must be explicitly requested and their lack causes the so‐called cold‐start problem. Moreover, lengthy travelling distances and excessive crowdedness of specific points of interest make itinerary planning more difficult. To address these aspects, a multi‐agent itinerary suggestion system that aims at assisting the users in an online and collaborative way is proposed. A profiling agent is responsible for the detection of groups of users whose movements are characterised by similar semantic, spatial and temporal features; then, a recommendation agent leverages contextual information and dynamically associates the current user with the trajectory clusters according to a Multi‐Armed Bandit policy. Framing the trajectory recommendation as a reinforcement learning problem permits to provide high‐quality suggestions while avoiding both cold‐start and preference elicitation issues. The effectiveness of the approach is demonstrated by some deployments in real‐life scenarios, such as smart campuses and theme parks.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1049/cit2.12056</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5963-6236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-2322
ispartof CAAI Transactions on Intelligence Technology, 2021-12, Vol.6 (4), p.377-393
issn 2468-2322
2468-6557
2468-2322
language eng
recordid cdi_wiley_primary_10_1049_cit2_12056_CIT212056
source Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Algorithms
artificial intelligence
Behavior
Collaboration
Computer Science
Computer Science, Artificial Intelligence
Entropy
Gaming machines
Mobility
multi‐agent systems
pattern recognition
Recommender systems
reinforcement learning
Science & Technology
Semantics
Technology
Theme parks
title A multi‐agent system for itinerary suggestion in smart environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi%E2%80%90agent%20system%20for%20itinerary%20suggestion%20in%20smart%20environments&rft.jtitle=CAAI%20Transactions%20on%20Intelligence%20Technology&rft.au=De%20Paola,%20Alessandra&rft.date=2021-12&rft.volume=6&rft.issue=4&rft.spage=377&rft.epage=393&rft.pages=377-393&rft.issn=2468-2322&rft.eissn=2468-2322&rft_id=info:doi/10.1049/cit2.12056&rft_dat=%3Cgale_wiley%3EA743986597%3C/gale_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091950209&rft_id=info:pmid/&rft_galeid=A743986597&rft_doaj_id=oai_doaj_org_article_c89374e593824ba084def9ac170a3be1&rfr_iscdi=true