Strain Localization in the Root of Detachment Faults at a Melt‐Starved Mid‐Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge

Detachment faults that exhume mantle peridotites to the seafloor play a major role in the accommodation of plate divergence at slow‐spreading ridges. Using 99 samples of partially serpentinized peridotites dredged from a nearly amagmatic segment of the eastern part of the Southwest Indian Ridge, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2021-05, Vol.22 (5), p.n/a, Article 2020
Hauptverfasser: Bickert, M., Cannat, M., Tommasi, A., Jammes, S., Lavier, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Geochemistry, geophysics, geosystems : G3
container_volume 22
creator Bickert, M.
Cannat, M.
Tommasi, A.
Jammes, S.
Lavier, L.
description Detachment faults that exhume mantle peridotites to the seafloor play a major role in the accommodation of plate divergence at slow‐spreading ridges. Using 99 samples of partially serpentinized peridotites dredged from a nearly amagmatic segment of the eastern part of the Southwest Indian Ridge, we characterize the deformation processes active in the root zone of detachment fault systems. The deformation is heterogeneous even at the sample scale and combines both brittle and crystal‐plastic mechanisms. Strain localization is initially controlled by strength contrasts at the grain scale between olivine and orthopyroxene and between variably oriented olivine crystals. Orthopyroxene deformation is primarily brittle (microfractures), but kink bands and dynamic recrystallization are locally observed. In contrast, olivine deforms primarily by dislocation creep with dynamic recrystallization under high deviatoric stresses (80–270 MPa). Olivine grains poorly oriented to deform by dislocation glide display kink bands and localized microfractures. Dynamic recrystallization controlled by strain and stress concentrations produce anastomosing zones of grain size reduction (GSR). GSR zones contain limited late to post‐kinematic amphibole, suggesting the presence of small volumes of hydrous fluids. Plagioclase, when present, is post‐kinematic. This heterogeneous high‐stress deformation is observed, with variable intensity, in every sample investigated, suggesting that it was pervasively distributed in the root region of axial detachments. Abyssal peridotite samples from more magmatically robust slow mid‐ocean ridges do not show this pervasive high stress deformation microstructure, implying magma, when present, tends to localize most of the strain at the root of axial detachment systems. Key Points Heterogeneous high stress deformation is observed in peridotites from the Eastern Southwest Indian ridge Stress and strain concentrations produce localized grain size reduction by dynamic recrystallization in olivine rich‐domains This deformation likely occurs at the root of axial detachment faults in magma‐starved mid‐ocean ridges
doi_str_mv 10.1029/2020GC009434
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2020GC009434_GGGE22495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76435efdf8d74b86b539a723c3abc4b6</doaj_id><sourcerecordid>2532169609</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4685-fb56ae40f2225ca1b22a6213f3f418a0b9331f6deb0bbf5d9257742a5417a45c3</originalsourceid><addsrcrecordid>eNqNkstuEzEUhkcIJEphxwNYYoUg4Otc2EWhSSOlKmpgbR3fGkeTcfF4WoUVj9Dn6GPxJDhJqcoGsfLxr-__fY51iuI1wR8Ips1HiimeTTBuOONPiiMiqBhlrXr6qH5evOj7NcaEC1EfFXfLFMF3aBE0tP4HJB86lO9pZdFFCAkFhz7bBHq1sV1CUxja1CNICNCZbdOvn7fLBPHaGnTmTb6dawsduvDm0n5C4yzqGPoUB52GCC1apsFsd5ljte37LHyx0ZuQfLI9msaw2T-8DENa3dg-oXln_J-8l8UzB21vX92fx8W36cnXyelocT6bT8aLEfCyFiOnRAmWY0cpFRqIohRKSphjjpMasGoYI640VmGlnDANFVXFKQhOKuBCs-Nifsg1AdbyKvoNxK0M4OVeCPFSQkxet1ZWJWfCOuNqU3FVl0qwBirKNAOluSpz1ttD1grav6JOxwu503BuhnKMr0lm3xzYqxi-D3l6uQ5D7PKokgpGSdmUuMnU-wO1-9g-WvcQS7DcbYF8vAUZf3fAb6wKrtfedto-WDDGpeAiu3JFWKbr_6cnPu3XZRKGLmUru7f61m7_2ZSczWYnlPJGsN_CztV5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532169609</pqid></control><display><type>article</type><title>Strain Localization in the Root of Detachment Faults at a Melt‐Starved Mid‐Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge</title><source>Wiley Online Library (Open Access Collection)</source><creator>Bickert, M. ; Cannat, M. ; Tommasi, A. ; Jammes, S. ; Lavier, L.</creator><creatorcontrib>Bickert, M. ; Cannat, M. ; Tommasi, A. ; Jammes, S. ; Lavier, L.</creatorcontrib><description>Detachment faults that exhume mantle peridotites to the seafloor play a major role in the accommodation of plate divergence at slow‐spreading ridges. Using 99 samples of partially serpentinized peridotites dredged from a nearly amagmatic segment of the eastern part of the Southwest Indian Ridge, we characterize the deformation processes active in the root zone of detachment fault systems. The deformation is heterogeneous even at the sample scale and combines both brittle and crystal‐plastic mechanisms. Strain localization is initially controlled by strength contrasts at the grain scale between olivine and orthopyroxene and between variably oriented olivine crystals. Orthopyroxene deformation is primarily brittle (microfractures), but kink bands and dynamic recrystallization are locally observed. In contrast, olivine deforms primarily by dislocation creep with dynamic recrystallization under high deviatoric stresses (80–270 MPa). Olivine grains poorly oriented to deform by dislocation glide display kink bands and localized microfractures. Dynamic recrystallization controlled by strain and stress concentrations produce anastomosing zones of grain size reduction (GSR). GSR zones contain limited late to post‐kinematic amphibole, suggesting the presence of small volumes of hydrous fluids. Plagioclase, when present, is post‐kinematic. This heterogeneous high‐stress deformation is observed, with variable intensity, in every sample investigated, suggesting that it was pervasively distributed in the root region of axial detachments. Abyssal peridotite samples from more magmatically robust slow mid‐ocean ridges do not show this pervasive high stress deformation microstructure, implying magma, when present, tends to localize most of the strain at the root of axial detachment systems. Key Points Heterogeneous high stress deformation is observed in peridotites from the Eastern Southwest Indian ridge Stress and strain concentrations produce localized grain size reduction by dynamic recrystallization in olivine rich‐domains This deformation likely occurs at the root of axial detachment faults in magma‐starved mid‐ocean ridges</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2020GC009434</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Crystals ; Deformation ; Earth Sciences ; Fluids ; Geochemistry &amp; Geophysics ; Kinematics ; Lava ; Localization ; Magma ; Microstructure ; Ocean floor ; Oceans ; Olivine ; Peridotite ; Physical Sciences ; Plagioclase ; Plate divergence ; Ridges ; Root zone ; Science &amp; Technology ; Sciences of the Universe ; Solifluction ; Spreading centres ; Strain ; Tectonics</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2021-05, Vol.22 (5), p.n/a, Article 2020</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000654502900013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a4685-fb56ae40f2225ca1b22a6213f3f418a0b9331f6deb0bbf5d9257742a5417a45c3</citedby><cites>FETCH-LOGICAL-a4685-fb56ae40f2225ca1b22a6213f3f418a0b9331f6deb0bbf5d9257742a5417a45c3</cites><orcidid>0000-0002-9022-3499 ; 0000-0001-7839-4263 ; 0000-0002-5157-8473 ; 0000-0001-8052-1524 ; 0000-0002-6457-1852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GC009434$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GC009434$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,11567,27929,27930,39263,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GC009434$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://hal.science/hal-03312400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bickert, M.</creatorcontrib><creatorcontrib>Cannat, M.</creatorcontrib><creatorcontrib>Tommasi, A.</creatorcontrib><creatorcontrib>Jammes, S.</creatorcontrib><creatorcontrib>Lavier, L.</creatorcontrib><title>Strain Localization in the Root of Detachment Faults at a Melt‐Starved Mid‐Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>GEOCHEM GEOPHY GEOSY</addtitle><description>Detachment faults that exhume mantle peridotites to the seafloor play a major role in the accommodation of plate divergence at slow‐spreading ridges. Using 99 samples of partially serpentinized peridotites dredged from a nearly amagmatic segment of the eastern part of the Southwest Indian Ridge, we characterize the deformation processes active in the root zone of detachment fault systems. The deformation is heterogeneous even at the sample scale and combines both brittle and crystal‐plastic mechanisms. Strain localization is initially controlled by strength contrasts at the grain scale between olivine and orthopyroxene and between variably oriented olivine crystals. Orthopyroxene deformation is primarily brittle (microfractures), but kink bands and dynamic recrystallization are locally observed. In contrast, olivine deforms primarily by dislocation creep with dynamic recrystallization under high deviatoric stresses (80–270 MPa). Olivine grains poorly oriented to deform by dislocation glide display kink bands and localized microfractures. Dynamic recrystallization controlled by strain and stress concentrations produce anastomosing zones of grain size reduction (GSR). GSR zones contain limited late to post‐kinematic amphibole, suggesting the presence of small volumes of hydrous fluids. Plagioclase, when present, is post‐kinematic. This heterogeneous high‐stress deformation is observed, with variable intensity, in every sample investigated, suggesting that it was pervasively distributed in the root region of axial detachments. Abyssal peridotite samples from more magmatically robust slow mid‐ocean ridges do not show this pervasive high stress deformation microstructure, implying magma, when present, tends to localize most of the strain at the root of axial detachment systems. Key Points Heterogeneous high stress deformation is observed in peridotites from the Eastern Southwest Indian ridge Stress and strain concentrations produce localized grain size reduction by dynamic recrystallization in olivine rich‐domains This deformation likely occurs at the root of axial detachment faults in magma‐starved mid‐ocean ridges</description><subject>Crystals</subject><subject>Deformation</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geochemistry &amp; Geophysics</subject><subject>Kinematics</subject><subject>Lava</subject><subject>Localization</subject><subject>Magma</subject><subject>Microstructure</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>Olivine</subject><subject>Peridotite</subject><subject>Physical Sciences</subject><subject>Plagioclase</subject><subject>Plate divergence</subject><subject>Ridges</subject><subject>Root zone</subject><subject>Science &amp; Technology</subject><subject>Sciences of the Universe</subject><subject>Solifluction</subject><subject>Spreading centres</subject><subject>Strain</subject><subject>Tectonics</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstuEzEUhkcIJEphxwNYYoUg4Otc2EWhSSOlKmpgbR3fGkeTcfF4WoUVj9Dn6GPxJDhJqcoGsfLxr-__fY51iuI1wR8Ips1HiimeTTBuOONPiiMiqBhlrXr6qH5evOj7NcaEC1EfFXfLFMF3aBE0tP4HJB86lO9pZdFFCAkFhz7bBHq1sV1CUxja1CNICNCZbdOvn7fLBPHaGnTmTb6dawsduvDm0n5C4yzqGPoUB52GCC1apsFsd5ljte37LHyx0ZuQfLI9msaw2T-8DENa3dg-oXln_J-8l8UzB21vX92fx8W36cnXyelocT6bT8aLEfCyFiOnRAmWY0cpFRqIohRKSphjjpMasGoYI640VmGlnDANFVXFKQhOKuBCs-Nifsg1AdbyKvoNxK0M4OVeCPFSQkxet1ZWJWfCOuNqU3FVl0qwBirKNAOluSpz1ttD1grav6JOxwu503BuhnKMr0lm3xzYqxi-D3l6uQ5D7PKokgpGSdmUuMnU-wO1-9g-WvcQS7DcbYF8vAUZf3fAb6wKrtfedto-WDDGpeAiu3JFWKbr_6cnPu3XZRKGLmUru7f61m7_2ZSczWYnlPJGsN_CztV5</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Bickert, M.</creator><creator>Cannat, M.</creator><creator>Tommasi, A.</creator><creator>Jammes, S.</creator><creator>Lavier, L.</creator><general>Amer Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><general>AGU and the Geochemical Society</general><general>Wiley</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9022-3499</orcidid><orcidid>https://orcid.org/0000-0001-7839-4263</orcidid><orcidid>https://orcid.org/0000-0002-5157-8473</orcidid><orcidid>https://orcid.org/0000-0001-8052-1524</orcidid><orcidid>https://orcid.org/0000-0002-6457-1852</orcidid></search><sort><creationdate>202105</creationdate><title>Strain Localization in the Root of Detachment Faults at a Melt‐Starved Mid‐Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge</title><author>Bickert, M. ; Cannat, M. ; Tommasi, A. ; Jammes, S. ; Lavier, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4685-fb56ae40f2225ca1b22a6213f3f418a0b9331f6deb0bbf5d9257742a5417a45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystals</topic><topic>Deformation</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geochemistry &amp; Geophysics</topic><topic>Kinematics</topic><topic>Lava</topic><topic>Localization</topic><topic>Magma</topic><topic>Microstructure</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>Olivine</topic><topic>Peridotite</topic><topic>Physical Sciences</topic><topic>Plagioclase</topic><topic>Plate divergence</topic><topic>Ridges</topic><topic>Root zone</topic><topic>Science &amp; Technology</topic><topic>Sciences of the Universe</topic><topic>Solifluction</topic><topic>Spreading centres</topic><topic>Strain</topic><topic>Tectonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bickert, M.</creatorcontrib><creatorcontrib>Cannat, M.</creatorcontrib><creatorcontrib>Tommasi, A.</creatorcontrib><creatorcontrib>Jammes, S.</creatorcontrib><creatorcontrib>Lavier, L.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bickert, M.</au><au>Cannat, M.</au><au>Tommasi, A.</au><au>Jammes, S.</au><au>Lavier, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Localization in the Root of Detachment Faults at a Melt‐Starved Mid‐Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><stitle>GEOCHEM GEOPHY GEOSY</stitle><date>2021-05</date><risdate>2021</risdate><volume>22</volume><issue>5</issue><epage>n/a</epage><artnum>2020</artnum><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Detachment faults that exhume mantle peridotites to the seafloor play a major role in the accommodation of plate divergence at slow‐spreading ridges. Using 99 samples of partially serpentinized peridotites dredged from a nearly amagmatic segment of the eastern part of the Southwest Indian Ridge, we characterize the deformation processes active in the root zone of detachment fault systems. The deformation is heterogeneous even at the sample scale and combines both brittle and crystal‐plastic mechanisms. Strain localization is initially controlled by strength contrasts at the grain scale between olivine and orthopyroxene and between variably oriented olivine crystals. Orthopyroxene deformation is primarily brittle (microfractures), but kink bands and dynamic recrystallization are locally observed. In contrast, olivine deforms primarily by dislocation creep with dynamic recrystallization under high deviatoric stresses (80–270 MPa). Olivine grains poorly oriented to deform by dislocation glide display kink bands and localized microfractures. Dynamic recrystallization controlled by strain and stress concentrations produce anastomosing zones of grain size reduction (GSR). GSR zones contain limited late to post‐kinematic amphibole, suggesting the presence of small volumes of hydrous fluids. Plagioclase, when present, is post‐kinematic. This heterogeneous high‐stress deformation is observed, with variable intensity, in every sample investigated, suggesting that it was pervasively distributed in the root region of axial detachments. Abyssal peridotite samples from more magmatically robust slow mid‐ocean ridges do not show this pervasive high stress deformation microstructure, implying magma, when present, tends to localize most of the strain at the root of axial detachment systems. Key Points Heterogeneous high stress deformation is observed in peridotites from the Eastern Southwest Indian ridge Stress and strain concentrations produce localized grain size reduction by dynamic recrystallization in olivine rich‐domains This deformation likely occurs at the root of axial detachment faults in magma‐starved mid‐ocean ridges</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2020GC009434</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9022-3499</orcidid><orcidid>https://orcid.org/0000-0001-7839-4263</orcidid><orcidid>https://orcid.org/0000-0002-5157-8473</orcidid><orcidid>https://orcid.org/0000-0001-8052-1524</orcidid><orcidid>https://orcid.org/0000-0002-6457-1852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2021-05, Vol.22 (5), p.n/a, Article 2020
issn 1525-2027
1525-2027
language eng
recordid cdi_wiley_primary_10_1029_2020GC009434_GGGE22495
source Wiley Online Library (Open Access Collection)
subjects Crystals
Deformation
Earth Sciences
Fluids
Geochemistry & Geophysics
Kinematics
Lava
Localization
Magma
Microstructure
Ocean floor
Oceans
Olivine
Peridotite
Physical Sciences
Plagioclase
Plate divergence
Ridges
Root zone
Science & Technology
Sciences of the Universe
Solifluction
Spreading centres
Strain
Tectonics
title Strain Localization in the Root of Detachment Faults at a Melt‐Starved Mid‐Ocean Ridge: A Microstructural Study of Abyssal Peridotites From the Southwest Indian Ridge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Localization%20in%20the%20Root%20of%20Detachment%20Faults%20at%20a%20Melt%E2%80%90Starved%20Mid%E2%80%90Ocean%20Ridge:%20A%20Microstructural%20Study%20of%20Abyssal%20Peridotites%20From%20the%20Southwest%20Indian%20Ridge&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Bickert,%20M.&rft.date=2021-05&rft.volume=22&rft.issue=5&rft.epage=n/a&rft.artnum=2020&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2020GC009434&rft_dat=%3Cproquest_24P%3E2532169609%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532169609&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_76435efdf8d74b86b539a723c3abc4b6&rfr_iscdi=true