Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2

The isotopic composition of H2 produced by methane oxidation (“δDhν”) is an important yet poorly constrained term in the global H2 isotope budget. Box model analyses of the extreme deuterium enrichment in stratospheric H2 demonstrated empirically that δDhν is much larger than the initial δD of CH4,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2007-10, Vol.112 (D19), p.n/a
Hauptverfasser: Mar, Kathleen A., McCarthy, Michael C., Connell, Peter, Boering, Kristie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D19
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 112
creator Mar, Kathleen A.
McCarthy, Michael C.
Connell, Peter
Boering, Kristie A.
description The isotopic composition of H2 produced by methane oxidation (“δDhν”) is an important yet poorly constrained term in the global H2 isotope budget. Box model analyses of the extreme deuterium enrichment in stratospheric H2 demonstrated empirically that δDhν is much larger than the initial δD of CH4, a conclusion that qualitatively resolved major discrepancies between the global H2 concentration and isotope budgets. However, the box model studies necessarily assumed that the isotopic fractionation factor for the conversion of CH4 to H2 remains constant throughout the stratosphere and that δDhν for the troposphere is equal to, or can be easily extrapolated from, the stratospheric value. Here, we use a 2‐D chemical‐radiative‐transport model to investigate these assumptions by determining the sensitivity of the isotopic composition of H2 (δD‐H2) and δDhν to known and unknown isotope effects in the elementary steps of the photochemical production and destruction of H2. Our results show that four categories of isotopic fractionation, (1) kinetic isotope effects (KIEs) for CH4 and H2 oxidation, (2) H versus D ion for CH3D oxidation to H2 or HD, (3) KIEs for CH2O oxidation, and (4) isotope effects for CH2O photolysis, all play significant but varying roles in determining δD‐H2 and δDhν in the stratosphere and troposphere. Furthermore, we show that calculated δDhν values vary significantly with latitude and altitude, leading to larger uncertainties in δDhν than previously estimated. Using these sensitivities, we also identify the laboratory experiments, theoretical calculations, and observations most needed to reduce uncertainties in the magnitude of δDhν and, hence, the global H2 isotope budget.
doi_str_mv 10.1029/2006JD007403
format Article
fullrecord <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2006JD007403_JGRD13130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRD13130</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1520-549c4bb778eecf65ac5127daa5f1dcdd5498d59f1d9eccdc1cb4836890644c293</originalsourceid><addsrcrecordid>eNpNkNtKAzEQQIMoWGrf_ID8wOokm-zlUVqttvWCFwRfQprMdqN7KdkU2793tSLOyzAczjwcQk4ZnDHg-TkHSGYTgFRAfEAGnMkk4hz4IRkAE1kEnKfHZNR179CPkIkANiBvt63FyjUrGkqk67INrSmxdkZXtPVu5ZqOtsUPxG3wWCO1uAno3aam2HhnyhqbQF1Du-B1aLt12UNDr_kJOSp01eHodw_Jy9Xl8_g6WtxPb8YXi8gxySGSIjdiuUzTDNEUidRGMp5arWXBrLG255mVeX_kaIw1zCxFFidZDokQhufxkMT7v5-uwp1ae1drv1MM1HcX9b-Lmk0fJyxmMfRWtLdcF3D7Z2n_oZI0TqV6vZuqeR9x_gBPSsZfHxNnmw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2</title><source>Wiley-Blackwell Open Access Backfiles</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Mar, Kathleen A. ; McCarthy, Michael C. ; Connell, Peter ; Boering, Kristie A.</creator><creatorcontrib>Mar, Kathleen A. ; McCarthy, Michael C. ; Connell, Peter ; Boering, Kristie A.</creatorcontrib><description>The isotopic composition of H2 produced by methane oxidation (“δDhν”) is an important yet poorly constrained term in the global H2 isotope budget. Box model analyses of the extreme deuterium enrichment in stratospheric H2 demonstrated empirically that δDhν is much larger than the initial δD of CH4, a conclusion that qualitatively resolved major discrepancies between the global H2 concentration and isotope budgets. However, the box model studies necessarily assumed that the isotopic fractionation factor for the conversion of CH4 to H2 remains constant throughout the stratosphere and that δDhν for the troposphere is equal to, or can be easily extrapolated from, the stratospheric value. Here, we use a 2‐D chemical‐radiative‐transport model to investigate these assumptions by determining the sensitivity of the isotopic composition of H2 (δD‐H2) and δDhν to known and unknown isotope effects in the elementary steps of the photochemical production and destruction of H2. Our results show that four categories of isotopic fractionation, (1) kinetic isotope effects (KIEs) for CH4 and H2 oxidation, (2) H versus D ion for CH3D oxidation to H2 or HD, (3) KIEs for CH2O oxidation, and (4) isotope effects for CH2O photolysis, all play significant but varying roles in determining δD‐H2 and δDhν in the stratosphere and troposphere. Furthermore, we show that calculated δDhν values vary significantly with latitude and altitude, leading to larger uncertainties in δDhν than previously estimated. Using these sensitivities, we also identify the laboratory experiments, theoretical calculations, and observations most needed to reduce uncertainties in the magnitude of δDhν and, hence, the global H2 isotope budget.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2006JD007403</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>atmospheric H2 ; isotope budget</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2007-10, Vol.112 (D19), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JD007403$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JD007403$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Mar, Kathleen A.</creatorcontrib><creatorcontrib>McCarthy, Michael C.</creatorcontrib><creatorcontrib>Connell, Peter</creatorcontrib><creatorcontrib>Boering, Kristie A.</creatorcontrib><title>Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>The isotopic composition of H2 produced by methane oxidation (“δDhν”) is an important yet poorly constrained term in the global H2 isotope budget. Box model analyses of the extreme deuterium enrichment in stratospheric H2 demonstrated empirically that δDhν is much larger than the initial δD of CH4, a conclusion that qualitatively resolved major discrepancies between the global H2 concentration and isotope budgets. However, the box model studies necessarily assumed that the isotopic fractionation factor for the conversion of CH4 to H2 remains constant throughout the stratosphere and that δDhν for the troposphere is equal to, or can be easily extrapolated from, the stratospheric value. Here, we use a 2‐D chemical‐radiative‐transport model to investigate these assumptions by determining the sensitivity of the isotopic composition of H2 (δD‐H2) and δDhν to known and unknown isotope effects in the elementary steps of the photochemical production and destruction of H2. Our results show that four categories of isotopic fractionation, (1) kinetic isotope effects (KIEs) for CH4 and H2 oxidation, (2) H versus D ion for CH3D oxidation to H2 or HD, (3) KIEs for CH2O oxidation, and (4) isotope effects for CH2O photolysis, all play significant but varying roles in determining δD‐H2 and δDhν in the stratosphere and troposphere. Furthermore, we show that calculated δDhν values vary significantly with latitude and altitude, leading to larger uncertainties in δDhν than previously estimated. Using these sensitivities, we also identify the laboratory experiments, theoretical calculations, and observations most needed to reduce uncertainties in the magnitude of δDhν and, hence, the global H2 isotope budget.</description><subject>atmospheric H2</subject><subject>isotope budget</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKAzEQQIMoWGrf_ID8wOokm-zlUVqttvWCFwRfQprMdqN7KdkU2793tSLOyzAczjwcQk4ZnDHg-TkHSGYTgFRAfEAGnMkk4hz4IRkAE1kEnKfHZNR179CPkIkANiBvt63FyjUrGkqk67INrSmxdkZXtPVu5ZqOtsUPxG3wWCO1uAno3aam2HhnyhqbQF1Du-B1aLt12UNDr_kJOSp01eHodw_Jy9Xl8_g6WtxPb8YXi8gxySGSIjdiuUzTDNEUidRGMp5arWXBrLG255mVeX_kaIw1zCxFFidZDokQhufxkMT7v5-uwp1ae1drv1MM1HcX9b-Lmk0fJyxmMfRWtLdcF3D7Z2n_oZI0TqV6vZuqeR9x_gBPSsZfHxNnmw</recordid><startdate>20071016</startdate><enddate>20071016</enddate><creator>Mar, Kathleen A.</creator><creator>McCarthy, Michael C.</creator><creator>Connell, Peter</creator><creator>Boering, Kristie A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>20071016</creationdate><title>Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2</title><author>Mar, Kathleen A. ; McCarthy, Michael C. ; Connell, Peter ; Boering, Kristie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1520-549c4bb778eecf65ac5127daa5f1dcdd5498d59f1d9eccdc1cb4836890644c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>atmospheric H2</topic><topic>isotope budget</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mar, Kathleen A.</creatorcontrib><creatorcontrib>McCarthy, Michael C.</creatorcontrib><creatorcontrib>Connell, Peter</creatorcontrib><creatorcontrib>Boering, Kristie A.</creatorcontrib><collection>Istex</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mar, Kathleen A.</au><au>McCarthy, Michael C.</au><au>Connell, Peter</au><au>Boering, Kristie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-10-16</date><risdate>2007</risdate><volume>112</volume><issue>D19</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The isotopic composition of H2 produced by methane oxidation (“δDhν”) is an important yet poorly constrained term in the global H2 isotope budget. Box model analyses of the extreme deuterium enrichment in stratospheric H2 demonstrated empirically that δDhν is much larger than the initial δD of CH4, a conclusion that qualitatively resolved major discrepancies between the global H2 concentration and isotope budgets. However, the box model studies necessarily assumed that the isotopic fractionation factor for the conversion of CH4 to H2 remains constant throughout the stratosphere and that δDhν for the troposphere is equal to, or can be easily extrapolated from, the stratospheric value. Here, we use a 2‐D chemical‐radiative‐transport model to investigate these assumptions by determining the sensitivity of the isotopic composition of H2 (δD‐H2) and δDhν to known and unknown isotope effects in the elementary steps of the photochemical production and destruction of H2. Our results show that four categories of isotopic fractionation, (1) kinetic isotope effects (KIEs) for CH4 and H2 oxidation, (2) H versus D ion for CH3D oxidation to H2 or HD, (3) KIEs for CH2O oxidation, and (4) isotope effects for CH2O photolysis, all play significant but varying roles in determining δD‐H2 and δDhν in the stratosphere and troposphere. Furthermore, we show that calculated δDhν values vary significantly with latitude and altitude, leading to larger uncertainties in δDhν than previously estimated. Using these sensitivities, we also identify the laboratory experiments, theoretical calculations, and observations most needed to reduce uncertainties in the magnitude of δDhν and, hence, the global H2 isotope budget.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JD007403</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2007-10, Vol.112 (D19), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_wiley_primary_10_1029_2006JD007403_JGRD13130
source Wiley-Blackwell Open Access Backfiles; Wiley-Blackwell AGU Digital Archive; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects atmospheric H2
isotope budget
title Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20photochemical%20origins%20of%20the%20extreme%20deuterium%20enrichment%20in%20stratospheric%20H2&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Mar,%20Kathleen%20A.&rft.date=2007-10-16&rft.volume=112&rft.issue=D19&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JD007403&rft_dat=%3Cwiley_istex%3EJGRD13130%3C/wiley_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true