Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors

In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2004-04, Vol.5 (4), p.n/a
Hauptverfasser: Guo, Song, Bluth, Gregg J. S., Rose, William I., Watson, I. Matthew, Prata, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Geochemistry, geophysics, geosystems : G3
container_volume 5
creator Guo, Song
Bluth, Gregg J. S.
Rose, William I.
Watson, I. Matthew
Prata, A. J.
description In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.
doi_str_mv 10.1029/2003GC000654
format Article
fullrecord <record><control><sourceid>istex_24P</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2003GC000654_GGGE481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_66R5PV4D_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4521-8f033512f894ef612c878391809ea2cb04c06aac251b26b09ea907039d4205f43</originalsourceid><addsrcrecordid>eNpNkMtOwkAYhRujiYjufIB5geo_t7azNIBVQ4TgbTkZyl8dHVsyM0V5e0GMYXUuyXcWJ0nOKVxQYOqSAfByAACZFAdJj0omUwYsP9zzx8lJCO8AVEhZ9JIwwxRXxnUm2rYhbU0eJox4dGgCbmN8Q0IlueuajSpFydQ2JnbzlqDvlr9QF2zzSjoXvVnZ1mEkplkQ29TeeFyQYCI6ZyOSgE1ofThNjmrjAp79aT95uh49Dm7S8aS8HVyN00pIRtOiBs4lZXWhBNYZZVWRF1zRAhQaVs1BVJAZUzFJ5yybb1sFOXC1EAxkLXg_obvdL-twrZfefhq_1hT09i29_5Yuy3IkCrph0h1jQ8Tvf8b4D53lPJf65b7UWTaT02cx1EP-A4yNbFE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</title><source>Wiley Online Library Open Access</source><creator>Guo, Song ; Bluth, Gregg J. S. ; Rose, William I. ; Watson, I. Matthew ; Prata, A. J.</creator><creatorcontrib>Guo, Song ; Bluth, Gregg J. S. ; Rose, William I. ; Watson, I. Matthew ; Prata, A. J.</creatorcontrib><description>In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2003GC000654</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Pinatubo eruption ; Satellite remote sensing ; SO2 release ; volcanic eruptions</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2004-04, Vol.5 (4), p.n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4521-8f033512f894ef612c878391809ea2cb04c06aac251b26b09ea907039d4205f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003GC000654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003GC000654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2003GC000654$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Bluth, Gregg J. S.</creatorcontrib><creatorcontrib>Rose, William I.</creatorcontrib><creatorcontrib>Watson, I. Matthew</creatorcontrib><creatorcontrib>Prata, A. J.</creatorcontrib><title>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.</description><subject>Pinatubo eruption</subject><subject>Satellite remote sensing</subject><subject>SO2 release</subject><subject>volcanic eruptions</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwkAYhRujiYjufIB5geo_t7azNIBVQ4TgbTkZyl8dHVsyM0V5e0GMYXUuyXcWJ0nOKVxQYOqSAfByAACZFAdJj0omUwYsP9zzx8lJCO8AVEhZ9JIwwxRXxnUm2rYhbU0eJox4dGgCbmN8Q0IlueuajSpFydQ2JnbzlqDvlr9QF2zzSjoXvVnZ1mEkplkQ29TeeFyQYCI6ZyOSgE1ofThNjmrjAp79aT95uh49Dm7S8aS8HVyN00pIRtOiBs4lZXWhBNYZZVWRF1zRAhQaVs1BVJAZUzFJ5yybb1sFOXC1EAxkLXg_obvdL-twrZfefhq_1hT09i29_5Yuy3IkCrph0h1jQ8Tvf8b4D53lPJf65b7UWTaT02cx1EP-A4yNbFE</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Guo, Song</creator><creator>Bluth, Gregg J. S.</creator><creator>Rose, William I.</creator><creator>Watson, I. Matthew</creator><creator>Prata, A. J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>200404</creationdate><title>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</title><author>Guo, Song ; Bluth, Gregg J. S. ; Rose, William I. ; Watson, I. Matthew ; Prata, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4521-8f033512f894ef612c878391809ea2cb04c06aac251b26b09ea907039d4205f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Pinatubo eruption</topic><topic>Satellite remote sensing</topic><topic>SO2 release</topic><topic>volcanic eruptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Bluth, Gregg J. S.</creatorcontrib><creatorcontrib>Rose, William I.</creatorcontrib><creatorcontrib>Watson, I. Matthew</creatorcontrib><creatorcontrib>Prata, A. J.</creatorcontrib><collection>Istex</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Song</au><au>Bluth, Gregg J. S.</au><au>Rose, William I.</au><au>Watson, I. Matthew</au><au>Prata, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2004-04</date><risdate>2004</risdate><volume>5</volume><issue>4</issue><epage>n/a</epage><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003GC000654</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2004-04, Vol.5 (4), p.n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_wiley_primary_10_1029_2003GC000654_GGGE481
source Wiley Online Library Open Access
subjects Pinatubo eruption
Satellite remote sensing
SO2 release
volcanic eruptions
title Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-evaluation%20of%20SO2%20release%20of%20the%2015%20June%201991%20Pinatubo%20eruption%20using%20ultraviolet%20and%20infrared%20satellite%20sensors&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Guo,%20Song&rft.date=2004-04&rft.volume=5&rft.issue=4&rft.epage=n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2003GC000654&rft_dat=%3Cistex_24P%3Eark_67375_WNG_66R5PV4D_D%3C/istex_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true