Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors
In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infra...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2004-04, Vol.5 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 5 |
creator | Guo, Song Bluth, Gregg J. S. Rose, William I. Watson, I. Matthew Prata, A. J. |
description | In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption. |
doi_str_mv | 10.1029/2003GC000654 |
format | Article |
fullrecord | <record><control><sourceid>istex_24P</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2003GC000654_GGGE481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_66R5PV4D_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4521-8f033512f894ef612c878391809ea2cb04c06aac251b26b09ea907039d4205f43</originalsourceid><addsrcrecordid>eNpNkMtOwkAYhRujiYjufIB5geo_t7azNIBVQ4TgbTkZyl8dHVsyM0V5e0GMYXUuyXcWJ0nOKVxQYOqSAfByAACZFAdJj0omUwYsP9zzx8lJCO8AVEhZ9JIwwxRXxnUm2rYhbU0eJox4dGgCbmN8Q0IlueuajSpFydQ2JnbzlqDvlr9QF2zzSjoXvVnZ1mEkplkQ29TeeFyQYCI6ZyOSgE1ofThNjmrjAp79aT95uh49Dm7S8aS8HVyN00pIRtOiBs4lZXWhBNYZZVWRF1zRAhQaVs1BVJAZUzFJ5yybb1sFOXC1EAxkLXg_obvdL-twrZfefhq_1hT09i29_5Yuy3IkCrph0h1jQ8Tvf8b4D53lPJf65b7UWTaT02cx1EP-A4yNbFE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</title><source>Wiley Online Library Open Access</source><creator>Guo, Song ; Bluth, Gregg J. S. ; Rose, William I. ; Watson, I. Matthew ; Prata, A. J.</creator><creatorcontrib>Guo, Song ; Bluth, Gregg J. S. ; Rose, William I. ; Watson, I. Matthew ; Prata, A. J.</creatorcontrib><description>In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2003GC000654</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Pinatubo eruption ; Satellite remote sensing ; SO2 release ; volcanic eruptions</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2004-04, Vol.5 (4), p.n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4521-8f033512f894ef612c878391809ea2cb04c06aac251b26b09ea907039d4205f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003GC000654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003GC000654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2003GC000654$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Bluth, Gregg J. S.</creatorcontrib><creatorcontrib>Rose, William I.</creatorcontrib><creatorcontrib>Watson, I. Matthew</creatorcontrib><creatorcontrib>Prata, A. J.</creatorcontrib><title>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.</description><subject>Pinatubo eruption</subject><subject>Satellite remote sensing</subject><subject>SO2 release</subject><subject>volcanic eruptions</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwkAYhRujiYjufIB5geo_t7azNIBVQ4TgbTkZyl8dHVsyM0V5e0GMYXUuyXcWJ0nOKVxQYOqSAfByAACZFAdJj0omUwYsP9zzx8lJCO8AVEhZ9JIwwxRXxnUm2rYhbU0eJox4dGgCbmN8Q0IlueuajSpFydQ2JnbzlqDvlr9QF2zzSjoXvVnZ1mEkplkQ29TeeFyQYCI6ZyOSgE1ofThNjmrjAp79aT95uh49Dm7S8aS8HVyN00pIRtOiBs4lZXWhBNYZZVWRF1zRAhQaVs1BVJAZUzFJ5yybb1sFOXC1EAxkLXg_obvdL-twrZfefhq_1hT09i29_5Yuy3IkCrph0h1jQ8Tvf8b4D53lPJf65b7UWTaT02cx1EP-A4yNbFE</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Guo, Song</creator><creator>Bluth, Gregg J. S.</creator><creator>Rose, William I.</creator><creator>Watson, I. Matthew</creator><creator>Prata, A. J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>200404</creationdate><title>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</title><author>Guo, Song ; Bluth, Gregg J. S. ; Rose, William I. ; Watson, I. Matthew ; Prata, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4521-8f033512f894ef612c878391809ea2cb04c06aac251b26b09ea907039d4205f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Pinatubo eruption</topic><topic>Satellite remote sensing</topic><topic>SO2 release</topic><topic>volcanic eruptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Bluth, Gregg J. S.</creatorcontrib><creatorcontrib>Rose, William I.</creatorcontrib><creatorcontrib>Watson, I. Matthew</creatorcontrib><creatorcontrib>Prata, A. J.</creatorcontrib><collection>Istex</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Song</au><au>Bluth, Gregg J. S.</au><au>Rose, William I.</au><au>Watson, I. Matthew</au><au>Prata, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2004-04</date><risdate>2004</risdate><volume>5</volume><issue>4</issue><epage>n/a</epage><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re‐evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2 removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e‐folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas‐phase SO2 release from sublimating stratospheric ice‐ash‐gas mixtures. This result suggests that ice‐sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003GC000654</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2004-04, Vol.5 (4), p.n/a |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_wiley_primary_10_1029_2003GC000654_GGGE481 |
source | Wiley Online Library Open Access |
subjects | Pinatubo eruption Satellite remote sensing SO2 release volcanic eruptions |
title | Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-evaluation%20of%20SO2%20release%20of%20the%2015%20June%201991%20Pinatubo%20eruption%20using%20ultraviolet%20and%20infrared%20satellite%20sensors&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Guo,%20Song&rft.date=2004-04&rft.volume=5&rft.issue=4&rft.epage=n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2003GC000654&rft_dat=%3Cistex_24P%3Eark_67375_WNG_66R5PV4D_D%3C/istex_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |