A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques
Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride pe...
Gespeichert in:
Veröffentlicht in: | Structural concrete : journal of the FIB 2022-04, Vol.23 (2), p.753-774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 2 |
container_start_page | 753 |
container_title | Structural concrete : journal of the FIB |
container_volume | 23 |
creator | Yuan, Jia Zhao, Ming Esmaeili‐Falak, Mahzad |
description | Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test. |
doi_str_mv | 10.1002/suco.202100682 |
format | Article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_suco_202100682_SUCO202100682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SUCO202100682</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2052-b7d799c6d4941d490493c26dcd0a487b10166b33b543db377b40a21a7d1530e13</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhCMEEqWwZe0LpNixEzfLquJPqtQFdB059mvzkPOD7YC64wjcgntxElxA3byZT5o3i0mSa0ZnjNLsxo-6n2U0i1DMs5NkwmTOUlmI-Wn0ohCpYFKeJxfev8R89Pkk-VoQ3beDcirgGxAfRrMnfUcGBwZ1wG5HQgPEqQEN0Y3tHRogA7gWVI0WQ0xviQe7_f74_G36e9J9px0EIKM_YAtBxUADo0MfUBNld7EqNC1RnSHKBdyiRmUJdgGsxR10GkgA3XT4OoK_TM62ynq4-tdpsrm7fV4-pKv1_eNysUp9RvMsraWRZakLI0rB4qGi5DorjDZUibmsGWVFUXNe54KbmktZC6oypqRhOafA-DQp_3rf0cK-Ghy2yu0rRqvDxtVh4-q4cfW0Wa6PxH8A8ml56Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yuan, Jia ; Zhao, Ming ; Esmaeili‐Falak, Mahzad</creator><creatorcontrib>Yuan, Jia ; Zhao, Ming ; Esmaeili‐Falak, Mahzad</creatorcontrib><description>Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.202100682</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>fly ash ; meta‐heuristic algorithm ; prediction ; rapid chloride permeability ; regression methods ; silica fume</subject><ispartof>Structural concrete : journal of the FIB, 2022-04, Vol.23 (2), p.753-774</ispartof><rights>2022 International Federation for Structural Concrete.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3089-8598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.202100682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.202100682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yuan, Jia</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Esmaeili‐Falak, Mahzad</creatorcontrib><title>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</title><title>Structural concrete : journal of the FIB</title><description>Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.</description><subject>fly ash</subject><subject>meta‐heuristic algorithm</subject><subject>prediction</subject><subject>rapid chloride permeability</subject><subject>regression methods</subject><subject>silica fume</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1OwzAUhCMEEqWwZe0LpNixEzfLquJPqtQFdB059mvzkPOD7YC64wjcgntxElxA3byZT5o3i0mSa0ZnjNLsxo-6n2U0i1DMs5NkwmTOUlmI-Wn0ohCpYFKeJxfev8R89Pkk-VoQ3beDcirgGxAfRrMnfUcGBwZ1wG5HQgPEqQEN0Y3tHRogA7gWVI0WQ0xviQe7_f74_G36e9J9px0EIKM_YAtBxUADo0MfUBNld7EqNC1RnSHKBdyiRmUJdgGsxR10GkgA3XT4OoK_TM62ynq4-tdpsrm7fV4-pKv1_eNysUp9RvMsraWRZakLI0rB4qGi5DorjDZUibmsGWVFUXNe54KbmktZC6oypqRhOafA-DQp_3rf0cK-Ghy2yu0rRqvDxtVh4-q4cfW0Wa6PxH8A8ml56Q</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Yuan, Jia</creator><creator>Zhao, Ming</creator><creator>Esmaeili‐Falak, Mahzad</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><scope/><orcidid>https://orcid.org/0000-0003-3089-8598</orcidid></search><sort><creationdate>202204</creationdate><title>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</title><author>Yuan, Jia ; Zhao, Ming ; Esmaeili‐Falak, Mahzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2052-b7d799c6d4941d490493c26dcd0a487b10166b33b543db377b40a21a7d1530e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>fly ash</topic><topic>meta‐heuristic algorithm</topic><topic>prediction</topic><topic>rapid chloride permeability</topic><topic>regression methods</topic><topic>silica fume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jia</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Esmaeili‐Falak, Mahzad</creatorcontrib><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jia</au><au>Zhao, Ming</au><au>Esmaeili‐Falak, Mahzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2022-04</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>753</spage><epage>774</epage><pages>753-774</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/suco.202100682</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3089-8598</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4177 |
ispartof | Structural concrete : journal of the FIB, 2022-04, Vol.23 (2), p.753-774 |
issn | 1464-4177 1751-7648 |
language | eng |
recordid | cdi_wiley_primary_10_1002_suco_202100682_SUCO202100682 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | fly ash meta‐heuristic algorithm prediction rapid chloride permeability regression methods silica fume |
title | A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20on%20predicting%20the%20rapid%20chloride%20permeability%20of%20self%E2%80%90compacting%20concrete%20using%20meta%E2%80%90heuristic%20algorithm%20and%20artificial%20intelligence%20techniques&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Yuan,%20Jia&rft.date=2022-04&rft.volume=23&rft.issue=2&rft.spage=753&rft.epage=774&rft.pages=753-774&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.202100682&rft_dat=%3Cwiley%3ESUCO202100682%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |