A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques

Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural concrete : journal of the FIB 2022-04, Vol.23 (2), p.753-774
Hauptverfasser: Yuan, Jia, Zhao, Ming, Esmaeili‐Falak, Mahzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 2
container_start_page 753
container_title Structural concrete : journal of the FIB
container_volume 23
creator Yuan, Jia
Zhao, Ming
Esmaeili‐Falak, Mahzad
description Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.
doi_str_mv 10.1002/suco.202100682
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_suco_202100682_SUCO202100682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SUCO202100682</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2052-b7d799c6d4941d490493c26dcd0a487b10166b33b543db377b40a21a7d1530e13</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhCMEEqWwZe0LpNixEzfLquJPqtQFdB059mvzkPOD7YC64wjcgntxElxA3byZT5o3i0mSa0ZnjNLsxo-6n2U0i1DMs5NkwmTOUlmI-Wn0ohCpYFKeJxfev8R89Pkk-VoQ3beDcirgGxAfRrMnfUcGBwZ1wG5HQgPEqQEN0Y3tHRogA7gWVI0WQ0xviQe7_f74_G36e9J9px0EIKM_YAtBxUADo0MfUBNld7EqNC1RnSHKBdyiRmUJdgGsxR10GkgA3XT4OoK_TM62ynq4-tdpsrm7fV4-pKv1_eNysUp9RvMsraWRZakLI0rB4qGi5DorjDZUibmsGWVFUXNe54KbmktZC6oypqRhOafA-DQp_3rf0cK-Ghy2yu0rRqvDxtVh4-q4cfW0Wa6PxH8A8ml56Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yuan, Jia ; Zhao, Ming ; Esmaeili‐Falak, Mahzad</creator><creatorcontrib>Yuan, Jia ; Zhao, Ming ; Esmaeili‐Falak, Mahzad</creatorcontrib><description>Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.202100682</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>fly ash ; meta‐heuristic algorithm ; prediction ; rapid chloride permeability ; regression methods ; silica fume</subject><ispartof>Structural concrete : journal of the FIB, 2022-04, Vol.23 (2), p.753-774</ispartof><rights>2022 International Federation for Structural Concrete.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3089-8598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.202100682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.202100682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yuan, Jia</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Esmaeili‐Falak, Mahzad</creatorcontrib><title>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</title><title>Structural concrete : journal of the FIB</title><description>Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.</description><subject>fly ash</subject><subject>meta‐heuristic algorithm</subject><subject>prediction</subject><subject>rapid chloride permeability</subject><subject>regression methods</subject><subject>silica fume</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1OwzAUhCMEEqWwZe0LpNixEzfLquJPqtQFdB059mvzkPOD7YC64wjcgntxElxA3byZT5o3i0mSa0ZnjNLsxo-6n2U0i1DMs5NkwmTOUlmI-Wn0ohCpYFKeJxfev8R89Pkk-VoQ3beDcirgGxAfRrMnfUcGBwZ1wG5HQgPEqQEN0Y3tHRogA7gWVI0WQ0xviQe7_f74_G36e9J9px0EIKM_YAtBxUADo0MfUBNld7EqNC1RnSHKBdyiRmUJdgGsxR10GkgA3XT4OoK_TM62ynq4-tdpsrm7fV4-pKv1_eNysUp9RvMsraWRZakLI0rB4qGi5DorjDZUibmsGWVFUXNe54KbmktZC6oypqRhOafA-DQp_3rf0cK-Ghy2yu0rRqvDxtVh4-q4cfW0Wa6PxH8A8ml56Q</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Yuan, Jia</creator><creator>Zhao, Ming</creator><creator>Esmaeili‐Falak, Mahzad</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><scope/><orcidid>https://orcid.org/0000-0003-3089-8598</orcidid></search><sort><creationdate>202204</creationdate><title>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</title><author>Yuan, Jia ; Zhao, Ming ; Esmaeili‐Falak, Mahzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2052-b7d799c6d4941d490493c26dcd0a487b10166b33b543db377b40a21a7d1530e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>fly ash</topic><topic>meta‐heuristic algorithm</topic><topic>prediction</topic><topic>rapid chloride permeability</topic><topic>regression methods</topic><topic>silica fume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jia</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Esmaeili‐Falak, Mahzad</creatorcontrib><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jia</au><au>Zhao, Ming</au><au>Esmaeili‐Falak, Mahzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2022-04</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>753</spage><epage>774</epage><pages>753-774</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>Obtaining a trustworthy approach to forecast the chloride penetration into self‐compacting concrete via rapid test may lead to frugality in cost, time, and energy to provide a durable mix design. Different single and hybrid regression methods are developed to predict the results of rapid chloride penetration tests in the present study. Cement content, fly ash, and silica fume replacement percent with cement, temperature and fine and coarse aggregates are considered as input variables. All predicted values using expanded models have a good agreement with experimentally measured results. Evaluating the accuracy and precision of single and hybrid optimized models by five statistical performance criteria (R2, root mean square error, mean absolute error, mean absolute percentage error, and performance index) illustrates that the hybrid support vector regression with optimization algorithm is a high‐accurate promising model for predicting the results of a rapid chloride penetration test.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/suco.202100682</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3089-8598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1464-4177
ispartof Structural concrete : journal of the FIB, 2022-04, Vol.23 (2), p.753-774
issn 1464-4177
1751-7648
language eng
recordid cdi_wiley_primary_10_1002_suco_202100682_SUCO202100682
source Wiley Online Library Journals Frontfile Complete
subjects fly ash
meta‐heuristic algorithm
prediction
rapid chloride permeability
regression methods
silica fume
title A comparative study on predicting the rapid chloride permeability of self‐compacting concrete using meta‐heuristic algorithm and artificial intelligence techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20on%20predicting%20the%20rapid%20chloride%20permeability%20of%20self%E2%80%90compacting%20concrete%20using%20meta%E2%80%90heuristic%20algorithm%20and%20artificial%20intelligence%20techniques&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Yuan,%20Jia&rft.date=2022-04&rft.volume=23&rft.issue=2&rft.spage=753&rft.epage=774&rft.pages=753-774&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.202100682&rft_dat=%3Cwiley%3ESUCO202100682%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true