Bi2WO6 Incorporation of g‐C3N4 to Enhance the Photocatalytic N2 Reduction Reaction and Antibiotic Pollutants Removal

Synthesis of ammonia from photocatalytic N2 reduction is challenging due to the fast recombination of electron–hole pairs and the low selectivity of N2 on catalysts. This can be addressed by creating heterojunctions to separate the photogenerated carriers adequately. In this regard, BW/g‐C3N4 is syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar RRL 2024-03, Vol.8 (6), p.n/a
Hauptverfasser: Dhanaraman, Esakkinaveen, Verma, Atul, Chen, Pin‐Han, Chen, Neng‐Di, Siddiqui, Yahhya, Fu, Yen‐Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Solar RRL
container_volume 8
creator Dhanaraman, Esakkinaveen
Verma, Atul
Chen, Pin‐Han
Chen, Neng‐Di
Siddiqui, Yahhya
Fu, Yen‐Pei
description Synthesis of ammonia from photocatalytic N2 reduction is challenging due to the fast recombination of electron–hole pairs and the low selectivity of N2 on catalysts. This can be addressed by creating heterojunctions to separate the photogenerated carriers adequately. In this regard, BW/g‐C3N4 is synthesized and the weight percentage of g‐C3N4 is varied. The best photocatalytic activity for N2 reduction reaction (N2RR) is achieved with a ratio of BW/gC3N4 in 3.5:2 ratio, deemed to be the optimized heterojunction. N2‐temperature programmed desorption analysis shows outstanding chemisorption of N2 adsorbed on the BW/g‐C3N4 surface compared to pristine g‐C3N4 and BW. Additionally, forming a heterojunction enhances the charge transfer process and well‐separated electron–hole pairs, significantly boosting the water oxidation process on the catalytic surface. Photoelectrochemical analysis reveals that BW/g‐C3N4 exhibits the shortest hole relaxation lifetime and higher current density than its pristine counterparts. The robust contact between g‐C3N4 and BW reduces the work function of BW/g‐C3N4 based on ultraviolet photoelectron spectroscopy data. Ammonia production with the optimized BW/gC3N4‐3.5:2 is 5.3 and 2.1 times higher than pure g‐C3N4 and Bi2WO6, respectively. Meanwhile, BW/g‐C3N4 demonstrates excellent photocatalytic activity toward antibiotic pollutant degradation as well. After 150 min of visible light irradiation, the removal of 94% ciprofloxacin (CIP) is observed. Finally, a possible mechanism is proposed for photocatalytic N2RR and CIP degradation. The distinctive feature of the Bi2WO6/g‐C3N4 hybrid is its innovative combination of Bi2WO6/g‐C3N4, creating a specialized interface that maximizes visible light absorption, enhances charge separation, and facilitates both N2 reduction reaction and pollutant degradation, and making a promising material for sustainable environmental application.
doi_str_mv 10.1002/solr.202300981
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_solr_202300981_SOLR202300981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SOLR202300981</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2051-f7cb04e957b13ecf5aa06a55ea83445eec5bbee1be27b34843102677fe0d77643</originalsourceid><addsrcrecordid>eNpNkM1OAjEcxBujiQS5eu4LLPZzu3tEgkpCgKBGb5u2_FdqypbsFszefASf0ScRxBBPM5PMzOGH0DUlfUoIu2mCr_uMME5IntEz1GE8VQnNs9fzf_4S9ZrmnewHQqgspR20u3XsZZbicWVDvQm1ji5UOJT47fvza8inAseAR9VKVxZwXAGer0IMVkft2-gsnjK8gOXW_s4WoI9GV0s8qKIzLhxK8-D9NuoqNvvKOuy0v0IXpfYN9P60i57vRk_Dh2Qyux8PB5OkYUTSpFTWEAG5VIZysKXUmqRaStAZF0ICWGkMADXAlOEiE5wSlipVAlkqlQreRfnx98N5aItN7da6bgtKigO14kCtOFErHmeTxSnxH086ZYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bi2WO6 Incorporation of g‐C3N4 to Enhance the Photocatalytic N2 Reduction Reaction and Antibiotic Pollutants Removal</title><source>Wiley Journals</source><creator>Dhanaraman, Esakkinaveen ; Verma, Atul ; Chen, Pin‐Han ; Chen, Neng‐Di ; Siddiqui, Yahhya ; Fu, Yen‐Pei</creator><creatorcontrib>Dhanaraman, Esakkinaveen ; Verma, Atul ; Chen, Pin‐Han ; Chen, Neng‐Di ; Siddiqui, Yahhya ; Fu, Yen‐Pei</creatorcontrib><description>Synthesis of ammonia from photocatalytic N2 reduction is challenging due to the fast recombination of electron–hole pairs and the low selectivity of N2 on catalysts. This can be addressed by creating heterojunctions to separate the photogenerated carriers adequately. In this regard, BW/g‐C3N4 is synthesized and the weight percentage of g‐C3N4 is varied. The best photocatalytic activity for N2 reduction reaction (N2RR) is achieved with a ratio of BW/gC3N4 in 3.5:2 ratio, deemed to be the optimized heterojunction. N2‐temperature programmed desorption analysis shows outstanding chemisorption of N2 adsorbed on the BW/g‐C3N4 surface compared to pristine g‐C3N4 and BW. Additionally, forming a heterojunction enhances the charge transfer process and well‐separated electron–hole pairs, significantly boosting the water oxidation process on the catalytic surface. Photoelectrochemical analysis reveals that BW/g‐C3N4 exhibits the shortest hole relaxation lifetime and higher current density than its pristine counterparts. The robust contact between g‐C3N4 and BW reduces the work function of BW/g‐C3N4 based on ultraviolet photoelectron spectroscopy data. Ammonia production with the optimized BW/gC3N4‐3.5:2 is 5.3 and 2.1 times higher than pure g‐C3N4 and Bi2WO6, respectively. Meanwhile, BW/g‐C3N4 demonstrates excellent photocatalytic activity toward antibiotic pollutant degradation as well. After 150 min of visible light irradiation, the removal of 94% ciprofloxacin (CIP) is observed. Finally, a possible mechanism is proposed for photocatalytic N2RR and CIP degradation. The distinctive feature of the Bi2WO6/g‐C3N4 hybrid is its innovative combination of Bi2WO6/g‐C3N4, creating a specialized interface that maximizes visible light absorption, enhances charge separation, and facilitates both N2 reduction reaction and pollutant degradation, and making a promising material for sustainable environmental application.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202300981</identifier><language>eng</language><subject>ciprofloxacin degradation ; heterojunctions ; N2 reduction reactions ; photocatalysis ; work function</subject><ispartof>Solar RRL, 2024-03, Vol.8 (6), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9224-2423 ; 0000-0002-1765-6343 ; 0000-0003-2950-845X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsolr.202300981$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsolr.202300981$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dhanaraman, Esakkinaveen</creatorcontrib><creatorcontrib>Verma, Atul</creatorcontrib><creatorcontrib>Chen, Pin‐Han</creatorcontrib><creatorcontrib>Chen, Neng‐Di</creatorcontrib><creatorcontrib>Siddiqui, Yahhya</creatorcontrib><creatorcontrib>Fu, Yen‐Pei</creatorcontrib><title>Bi2WO6 Incorporation of g‐C3N4 to Enhance the Photocatalytic N2 Reduction Reaction and Antibiotic Pollutants Removal</title><title>Solar RRL</title><description>Synthesis of ammonia from photocatalytic N2 reduction is challenging due to the fast recombination of electron–hole pairs and the low selectivity of N2 on catalysts. This can be addressed by creating heterojunctions to separate the photogenerated carriers adequately. In this regard, BW/g‐C3N4 is synthesized and the weight percentage of g‐C3N4 is varied. The best photocatalytic activity for N2 reduction reaction (N2RR) is achieved with a ratio of BW/gC3N4 in 3.5:2 ratio, deemed to be the optimized heterojunction. N2‐temperature programmed desorption analysis shows outstanding chemisorption of N2 adsorbed on the BW/g‐C3N4 surface compared to pristine g‐C3N4 and BW. Additionally, forming a heterojunction enhances the charge transfer process and well‐separated electron–hole pairs, significantly boosting the water oxidation process on the catalytic surface. Photoelectrochemical analysis reveals that BW/g‐C3N4 exhibits the shortest hole relaxation lifetime and higher current density than its pristine counterparts. The robust contact between g‐C3N4 and BW reduces the work function of BW/g‐C3N4 based on ultraviolet photoelectron spectroscopy data. Ammonia production with the optimized BW/gC3N4‐3.5:2 is 5.3 and 2.1 times higher than pure g‐C3N4 and Bi2WO6, respectively. Meanwhile, BW/g‐C3N4 demonstrates excellent photocatalytic activity toward antibiotic pollutant degradation as well. After 150 min of visible light irradiation, the removal of 94% ciprofloxacin (CIP) is observed. Finally, a possible mechanism is proposed for photocatalytic N2RR and CIP degradation. The distinctive feature of the Bi2WO6/g‐C3N4 hybrid is its innovative combination of Bi2WO6/g‐C3N4, creating a specialized interface that maximizes visible light absorption, enhances charge separation, and facilitates both N2 reduction reaction and pollutant degradation, and making a promising material for sustainable environmental application.</description><subject>ciprofloxacin degradation</subject><subject>heterojunctions</subject><subject>N2 reduction reactions</subject><subject>photocatalysis</subject><subject>work function</subject><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1OAjEcxBujiQS5eu4LLPZzu3tEgkpCgKBGb5u2_FdqypbsFszefASf0ScRxBBPM5PMzOGH0DUlfUoIu2mCr_uMME5IntEz1GE8VQnNs9fzf_4S9ZrmnewHQqgspR20u3XsZZbicWVDvQm1ji5UOJT47fvza8inAseAR9VKVxZwXAGer0IMVkft2-gsnjK8gOXW_s4WoI9GV0s8qKIzLhxK8-D9NuoqNvvKOuy0v0IXpfYN9P60i57vRk_Dh2Qyux8PB5OkYUTSpFTWEAG5VIZysKXUmqRaStAZF0ICWGkMADXAlOEiE5wSlipVAlkqlQreRfnx98N5aItN7da6bgtKigO14kCtOFErHmeTxSnxH086ZYg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Dhanaraman, Esakkinaveen</creator><creator>Verma, Atul</creator><creator>Chen, Pin‐Han</creator><creator>Chen, Neng‐Di</creator><creator>Siddiqui, Yahhya</creator><creator>Fu, Yen‐Pei</creator><scope/><orcidid>https://orcid.org/0000-0002-9224-2423</orcidid><orcidid>https://orcid.org/0000-0002-1765-6343</orcidid><orcidid>https://orcid.org/0000-0003-2950-845X</orcidid></search><sort><creationdate>202403</creationdate><title>Bi2WO6 Incorporation of g‐C3N4 to Enhance the Photocatalytic N2 Reduction Reaction and Antibiotic Pollutants Removal</title><author>Dhanaraman, Esakkinaveen ; Verma, Atul ; Chen, Pin‐Han ; Chen, Neng‐Di ; Siddiqui, Yahhya ; Fu, Yen‐Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2051-f7cb04e957b13ecf5aa06a55ea83445eec5bbee1be27b34843102677fe0d77643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ciprofloxacin degradation</topic><topic>heterojunctions</topic><topic>N2 reduction reactions</topic><topic>photocatalysis</topic><topic>work function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhanaraman, Esakkinaveen</creatorcontrib><creatorcontrib>Verma, Atul</creatorcontrib><creatorcontrib>Chen, Pin‐Han</creatorcontrib><creatorcontrib>Chen, Neng‐Di</creatorcontrib><creatorcontrib>Siddiqui, Yahhya</creatorcontrib><creatorcontrib>Fu, Yen‐Pei</creatorcontrib><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhanaraman, Esakkinaveen</au><au>Verma, Atul</au><au>Chen, Pin‐Han</au><au>Chen, Neng‐Di</au><au>Siddiqui, Yahhya</au><au>Fu, Yen‐Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi2WO6 Incorporation of g‐C3N4 to Enhance the Photocatalytic N2 Reduction Reaction and Antibiotic Pollutants Removal</atitle><jtitle>Solar RRL</jtitle><date>2024-03</date><risdate>2024</risdate><volume>8</volume><issue>6</issue><epage>n/a</epage><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Synthesis of ammonia from photocatalytic N2 reduction is challenging due to the fast recombination of electron–hole pairs and the low selectivity of N2 on catalysts. This can be addressed by creating heterojunctions to separate the photogenerated carriers adequately. In this regard, BW/g‐C3N4 is synthesized and the weight percentage of g‐C3N4 is varied. The best photocatalytic activity for N2 reduction reaction (N2RR) is achieved with a ratio of BW/gC3N4 in 3.5:2 ratio, deemed to be the optimized heterojunction. N2‐temperature programmed desorption analysis shows outstanding chemisorption of N2 adsorbed on the BW/g‐C3N4 surface compared to pristine g‐C3N4 and BW. Additionally, forming a heterojunction enhances the charge transfer process and well‐separated electron–hole pairs, significantly boosting the water oxidation process on the catalytic surface. Photoelectrochemical analysis reveals that BW/g‐C3N4 exhibits the shortest hole relaxation lifetime and higher current density than its pristine counterparts. The robust contact between g‐C3N4 and BW reduces the work function of BW/g‐C3N4 based on ultraviolet photoelectron spectroscopy data. Ammonia production with the optimized BW/gC3N4‐3.5:2 is 5.3 and 2.1 times higher than pure g‐C3N4 and Bi2WO6, respectively. Meanwhile, BW/g‐C3N4 demonstrates excellent photocatalytic activity toward antibiotic pollutant degradation as well. After 150 min of visible light irradiation, the removal of 94% ciprofloxacin (CIP) is observed. Finally, a possible mechanism is proposed for photocatalytic N2RR and CIP degradation. The distinctive feature of the Bi2WO6/g‐C3N4 hybrid is its innovative combination of Bi2WO6/g‐C3N4, creating a specialized interface that maximizes visible light absorption, enhances charge separation, and facilitates both N2 reduction reaction and pollutant degradation, and making a promising material for sustainable environmental application.</abstract><doi>10.1002/solr.202300981</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9224-2423</orcidid><orcidid>https://orcid.org/0000-0002-1765-6343</orcidid><orcidid>https://orcid.org/0000-0003-2950-845X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2367-198X
ispartof Solar RRL, 2024-03, Vol.8 (6), p.n/a
issn 2367-198X
2367-198X
language eng
recordid cdi_wiley_primary_10_1002_solr_202300981_SOLR202300981
source Wiley Journals
subjects ciprofloxacin degradation
heterojunctions
N2 reduction reactions
photocatalysis
work function
title Bi2WO6 Incorporation of g‐C3N4 to Enhance the Photocatalytic N2 Reduction Reaction and Antibiotic Pollutants Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi2WO6%20Incorporation%20of%20g%E2%80%90C3N4%20to%20Enhance%20the%20Photocatalytic%20N2%20Reduction%20Reaction%20and%20Antibiotic%20Pollutants%20Removal&rft.jtitle=Solar%20RRL&rft.au=Dhanaraman,%20Esakkinaveen&rft.date=2024-03&rft.volume=8&rft.issue=6&rft.epage=n/a&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202300981&rft_dat=%3Cwiley%3ESOLR202300981%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true