Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability
Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is...
Gespeichert in:
Veröffentlicht in: | Small methods 2020-12, Vol.4 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Small methods |
container_volume | 4 |
creator | Li, Huihua Ma, Yuan Zhang, Huang Diemant, Thomas Behm, R. Jürgen Varzi, Alberto Passerini, Stefano |
description | Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles ( |
doi_str_mv | 10.1002/smtd.202000637 |
format | Article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_smtd_202000637_SMTD202000637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SMTD202000637</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2457-28dcb9aea7cd8d9db845a04a56381c698ac5f781a60f0b40d5a1973dc07bc9e83</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXplbNfIGXt_DlH1B-K1NJDyzna2G4xJHHkGKreeuKMxBv2SUgFqrjszO6O5vARcstgyAD4XVt5NeTAASAJ0wvS42GSBFkC4vKfvyaDtn3tMhxYGHPWI58L7bE8Hr6Xbou1kXTqsNI7697oWDvzoRWd6nQl6BPWtkHnjSx1SydVoZXqnqamM-21s-htdTx8jW3TXUfoClvTnfEvdN4N815RrBVdWXWyK28dbnUXa7AwpfH7G3K1wbLVgz_tk-fpZD2aBfPlw-Pofh60PIrTgAsliww1plIJlalCRDFChHESCiaTTKCMN6lgmMAGighUjCxLQyUhLWSmRdgn2W_vzpR6nzfOVOj2OYP8RDE_UczPFPPVYj0-b-EPPoBs7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</title><source>Access via Wiley Online Library</source><creator>Li, Huihua ; Ma, Yuan ; Zhang, Huang ; Diemant, Thomas ; Behm, R. Jürgen ; Varzi, Alberto ; Passerini, Stefano</creator><creatorcontrib>Li, Huihua ; Ma, Yuan ; Zhang, Huang ; Diemant, Thomas ; Behm, R. Jürgen ; Varzi, Alberto ; Passerini, Stefano</creatorcontrib><description>Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (<10 nm in diameter) embedded in a heteroatom (N, S, and O)‐doped carbonaceous framework (Fe7S8@HD‐C), and is obtained via a simple and efficient one‐step sulfidation process. The Fe7S8@HD‐C composite, investigated in diethylene glycol dimethyl ether‐based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X‐ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long‐term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long‐term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates.
Transition metal sulfides are first investigated in DEGDME electrolytes for both sodium and lithium storage. There are some interesting differences between (de)lithiation and (de)sodiation mechanisms in diethylene glycol dimethyl ether‐based electrolytes. Upon oxidation the initial Fe7S8 is recovered in the case of sodium, suggesting that the de‐insertion of Li may be partially irreversible.</description><identifier>ISSN: 2366-9608</identifier><identifier>EISSN: 2366-9608</identifier><identifier>DOI: 10.1002/smtd.202000637</identifier><language>eng</language><subject>iron sulfide nanoparticles ; lithium‐ion batteries ; metal–organic frameworks ; porous carbonaceous frameworks ; sodium‐ion batteries</subject><ispartof>Small methods, 2020-12, Vol.4 (12), p.n/a</ispartof><rights>2020 The Authors. Small Methods published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6606-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmtd.202000637$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmtd.202000637$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Huihua</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Zhang, Huang</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Behm, R. Jürgen</creatorcontrib><creatorcontrib>Varzi, Alberto</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><title>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</title><title>Small methods</title><description>Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (<10 nm in diameter) embedded in a heteroatom (N, S, and O)‐doped carbonaceous framework (Fe7S8@HD‐C), and is obtained via a simple and efficient one‐step sulfidation process. The Fe7S8@HD‐C composite, investigated in diethylene glycol dimethyl ether‐based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X‐ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long‐term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long‐term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates.
Transition metal sulfides are first investigated in DEGDME electrolytes for both sodium and lithium storage. There are some interesting differences between (de)lithiation and (de)sodiation mechanisms in diethylene glycol dimethyl ether‐based electrolytes. Upon oxidation the initial Fe7S8 is recovered in the case of sodium, suggesting that the de‐insertion of Li may be partially irreversible.</description><subject>iron sulfide nanoparticles</subject><subject>lithium‐ion batteries</subject><subject>metal–organic frameworks</subject><subject>porous carbonaceous frameworks</subject><subject>sodium‐ion batteries</subject><issn>2366-9608</issn><issn>2366-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkM1OwzAQhC0EElXplbNfIGXt_DlH1B-K1NJDyzna2G4xJHHkGKreeuKMxBv2SUgFqrjszO6O5vARcstgyAD4XVt5NeTAASAJ0wvS42GSBFkC4vKfvyaDtn3tMhxYGHPWI58L7bE8Hr6Xbou1kXTqsNI7697oWDvzoRWd6nQl6BPWtkHnjSx1SydVoZXqnqamM-21s-htdTx8jW3TXUfoClvTnfEvdN4N815RrBVdWXWyK28dbnUXa7AwpfH7G3K1wbLVgz_tk-fpZD2aBfPlw-Pofh60PIrTgAsliww1plIJlalCRDFChHESCiaTTKCMN6lgmMAGighUjCxLQyUhLWSmRdgn2W_vzpR6nzfOVOj2OYP8RDE_UczPFPPVYj0-b-EPPoBs7Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Li, Huihua</creator><creator>Ma, Yuan</creator><creator>Zhang, Huang</creator><creator>Diemant, Thomas</creator><creator>Behm, R. Jürgen</creator><creator>Varzi, Alberto</creator><creator>Passerini, Stefano</creator><scope>24P</scope><scope>WIN</scope><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></search><sort><creationdate>20201201</creationdate><title>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</title><author>Li, Huihua ; Ma, Yuan ; Zhang, Huang ; Diemant, Thomas ; Behm, R. Jürgen ; Varzi, Alberto ; Passerini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2457-28dcb9aea7cd8d9db845a04a56381c698ac5f781a60f0b40d5a1973dc07bc9e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>iron sulfide nanoparticles</topic><topic>lithium‐ion batteries</topic><topic>metal–organic frameworks</topic><topic>porous carbonaceous frameworks</topic><topic>sodium‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huihua</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Zhang, Huang</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Behm, R. Jürgen</creatorcontrib><creatorcontrib>Varzi, Alberto</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><jtitle>Small methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huihua</au><au>Ma, Yuan</au><au>Zhang, Huang</au><au>Diemant, Thomas</au><au>Behm, R. Jürgen</au><au>Varzi, Alberto</au><au>Passerini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</atitle><jtitle>Small methods</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>4</volume><issue>12</issue><epage>n/a</epage><issn>2366-9608</issn><eissn>2366-9608</eissn><abstract>Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (<10 nm in diameter) embedded in a heteroatom (N, S, and O)‐doped carbonaceous framework (Fe7S8@HD‐C), and is obtained via a simple and efficient one‐step sulfidation process. The Fe7S8@HD‐C composite, investigated in diethylene glycol dimethyl ether‐based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X‐ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long‐term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long‐term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates.
Transition metal sulfides are first investigated in DEGDME electrolytes for both sodium and lithium storage. There are some interesting differences between (de)lithiation and (de)sodiation mechanisms in diethylene glycol dimethyl ether‐based electrolytes. Upon oxidation the initial Fe7S8 is recovered in the case of sodium, suggesting that the de‐insertion of Li may be partially irreversible.</abstract><doi>10.1002/smtd.202000637</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2366-9608 |
ispartof | Small methods, 2020-12, Vol.4 (12), p.n/a |
issn | 2366-9608 2366-9608 |
language | eng |
recordid | cdi_wiley_primary_10_1002_smtd_202000637_SMTD202000637 |
source | Access via Wiley Online Library |
subjects | iron sulfide nanoparticles lithium‐ion batteries metal–organic frameworks porous carbonaceous frameworks sodium‐ion batteries |
title | Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%20Derived%20Fe7S8%20Nanoparticles%20Embedded%20in%20Heteroatom%E2%80%90Doped%20Carbon%20with%20Lithium%20and%20Sodium%20Storage%20Capability&rft.jtitle=Small%20methods&rft.au=Li,%20Huihua&rft.date=2020-12-01&rft.volume=4&rft.issue=12&rft.epage=n/a&rft.issn=2366-9608&rft.eissn=2366-9608&rft_id=info:doi/10.1002/smtd.202000637&rft_dat=%3Cwiley%3ESMTD202000637%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |