Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability

Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small methods 2020-12, Vol.4 (12), p.n/a
Hauptverfasser: Li, Huihua, Ma, Yuan, Zhang, Huang, Diemant, Thomas, Behm, R. Jürgen, Varzi, Alberto, Passerini, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Small methods
container_volume 4
creator Li, Huihua
Ma, Yuan
Zhang, Huang
Diemant, Thomas
Behm, R. Jürgen
Varzi, Alberto
Passerini, Stefano
description Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (
doi_str_mv 10.1002/smtd.202000637
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_smtd_202000637_SMTD202000637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SMTD202000637</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2457-28dcb9aea7cd8d9db845a04a56381c698ac5f781a60f0b40d5a1973dc07bc9e83</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXplbNfIGXt_DlH1B-K1NJDyzna2G4xJHHkGKreeuKMxBv2SUgFqrjszO6O5vARcstgyAD4XVt5NeTAASAJ0wvS42GSBFkC4vKfvyaDtn3tMhxYGHPWI58L7bE8Hr6Xbou1kXTqsNI7697oWDvzoRWd6nQl6BPWtkHnjSx1SydVoZXqnqamM-21s-htdTx8jW3TXUfoClvTnfEvdN4N815RrBVdWXWyK28dbnUXa7AwpfH7G3K1wbLVgz_tk-fpZD2aBfPlw-Pofh60PIrTgAsliww1plIJlalCRDFChHESCiaTTKCMN6lgmMAGighUjCxLQyUhLWSmRdgn2W_vzpR6nzfOVOj2OYP8RDE_UczPFPPVYj0-b-EPPoBs7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</title><source>Access via Wiley Online Library</source><creator>Li, Huihua ; Ma, Yuan ; Zhang, Huang ; Diemant, Thomas ; Behm, R. Jürgen ; Varzi, Alberto ; Passerini, Stefano</creator><creatorcontrib>Li, Huihua ; Ma, Yuan ; Zhang, Huang ; Diemant, Thomas ; Behm, R. Jürgen ; Varzi, Alberto ; Passerini, Stefano</creatorcontrib><description>Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (&lt;10 nm in diameter) embedded in a heteroatom (N, S, and O)‐doped carbonaceous framework (Fe7S8@HD‐C), and is obtained via a simple and efficient one‐step sulfidation process. The Fe7S8@HD‐C composite, investigated in diethylene glycol dimethyl ether‐based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X‐ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long‐term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long‐term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates. Transition metal sulfides are first investigated in DEGDME electrolytes for both sodium and lithium storage. There are some interesting differences between (de)lithiation and (de)sodiation mechanisms in diethylene glycol dimethyl ether‐based electrolytes. Upon oxidation the initial Fe7S8 is recovered in the case of sodium, suggesting that the de‐insertion of Li may be partially irreversible.</description><identifier>ISSN: 2366-9608</identifier><identifier>EISSN: 2366-9608</identifier><identifier>DOI: 10.1002/smtd.202000637</identifier><language>eng</language><subject>iron sulfide nanoparticles ; lithium‐ion batteries ; metal–organic frameworks ; porous carbonaceous frameworks ; sodium‐ion batteries</subject><ispartof>Small methods, 2020-12, Vol.4 (12), p.n/a</ispartof><rights>2020 The Authors. Small Methods published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6606-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmtd.202000637$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmtd.202000637$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Huihua</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Zhang, Huang</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Behm, R. Jürgen</creatorcontrib><creatorcontrib>Varzi, Alberto</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><title>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</title><title>Small methods</title><description>Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (&lt;10 nm in diameter) embedded in a heteroatom (N, S, and O)‐doped carbonaceous framework (Fe7S8@HD‐C), and is obtained via a simple and efficient one‐step sulfidation process. The Fe7S8@HD‐C composite, investigated in diethylene glycol dimethyl ether‐based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X‐ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long‐term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long‐term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates. Transition metal sulfides are first investigated in DEGDME electrolytes for both sodium and lithium storage. There are some interesting differences between (de)lithiation and (de)sodiation mechanisms in diethylene glycol dimethyl ether‐based electrolytes. Upon oxidation the initial Fe7S8 is recovered in the case of sodium, suggesting that the de‐insertion of Li may be partially irreversible.</description><subject>iron sulfide nanoparticles</subject><subject>lithium‐ion batteries</subject><subject>metal–organic frameworks</subject><subject>porous carbonaceous frameworks</subject><subject>sodium‐ion batteries</subject><issn>2366-9608</issn><issn>2366-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkM1OwzAQhC0EElXplbNfIGXt_DlH1B-K1NJDyzna2G4xJHHkGKreeuKMxBv2SUgFqrjszO6O5vARcstgyAD4XVt5NeTAASAJ0wvS42GSBFkC4vKfvyaDtn3tMhxYGHPWI58L7bE8Hr6Xbou1kXTqsNI7697oWDvzoRWd6nQl6BPWtkHnjSx1SydVoZXqnqamM-21s-htdTx8jW3TXUfoClvTnfEvdN4N815RrBVdWXWyK28dbnUXa7AwpfH7G3K1wbLVgz_tk-fpZD2aBfPlw-Pofh60PIrTgAsliww1plIJlalCRDFChHESCiaTTKCMN6lgmMAGighUjCxLQyUhLWSmRdgn2W_vzpR6nzfOVOj2OYP8RDE_UczPFPPVYj0-b-EPPoBs7Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Li, Huihua</creator><creator>Ma, Yuan</creator><creator>Zhang, Huang</creator><creator>Diemant, Thomas</creator><creator>Behm, R. Jürgen</creator><creator>Varzi, Alberto</creator><creator>Passerini, Stefano</creator><scope>24P</scope><scope>WIN</scope><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></search><sort><creationdate>20201201</creationdate><title>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</title><author>Li, Huihua ; Ma, Yuan ; Zhang, Huang ; Diemant, Thomas ; Behm, R. Jürgen ; Varzi, Alberto ; Passerini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2457-28dcb9aea7cd8d9db845a04a56381c698ac5f781a60f0b40d5a1973dc07bc9e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>iron sulfide nanoparticles</topic><topic>lithium‐ion batteries</topic><topic>metal–organic frameworks</topic><topic>porous carbonaceous frameworks</topic><topic>sodium‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huihua</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Zhang, Huang</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Behm, R. Jürgen</creatorcontrib><creatorcontrib>Varzi, Alberto</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><jtitle>Small methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huihua</au><au>Ma, Yuan</au><au>Zhang, Huang</au><au>Diemant, Thomas</au><au>Behm, R. Jürgen</au><au>Varzi, Alberto</au><au>Passerini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability</atitle><jtitle>Small methods</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>4</volume><issue>12</issue><epage>n/a</epage><issn>2366-9608</issn><eissn>2366-9608</eissn><abstract>Iron sulfides are promising materials for lithium‐ and sodium‐ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide‐carbon composite, synthesized from a Fe‐based metal–organic framework (Fe‐MIL‐88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (&lt;10 nm in diameter) embedded in a heteroatom (N, S, and O)‐doped carbonaceous framework (Fe7S8@HD‐C), and is obtained via a simple and efficient one‐step sulfidation process. The Fe7S8@HD‐C composite, investigated in diethylene glycol dimethyl ether‐based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X‐ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long‐term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long‐term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates. Transition metal sulfides are first investigated in DEGDME electrolytes for both sodium and lithium storage. There are some interesting differences between (de)lithiation and (de)sodiation mechanisms in diethylene glycol dimethyl ether‐based electrolytes. Upon oxidation the initial Fe7S8 is recovered in the case of sodium, suggesting that the de‐insertion of Li may be partially irreversible.</abstract><doi>10.1002/smtd.202000637</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2366-9608
ispartof Small methods, 2020-12, Vol.4 (12), p.n/a
issn 2366-9608
2366-9608
language eng
recordid cdi_wiley_primary_10_1002_smtd_202000637_SMTD202000637
source Access via Wiley Online Library
subjects iron sulfide nanoparticles
lithium‐ion batteries
metal–organic frameworks
porous carbonaceous frameworks
sodium‐ion batteries
title Metal–Organic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom‐Doped Carbon with Lithium and Sodium Storage Capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%20Derived%20Fe7S8%20Nanoparticles%20Embedded%20in%20Heteroatom%E2%80%90Doped%20Carbon%20with%20Lithium%20and%20Sodium%20Storage%20Capability&rft.jtitle=Small%20methods&rft.au=Li,%20Huihua&rft.date=2020-12-01&rft.volume=4&rft.issue=12&rft.epage=n/a&rft.issn=2366-9608&rft.eissn=2366-9608&rft_id=info:doi/10.1002/smtd.202000637&rft_dat=%3Cwiley%3ESMTD202000637%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true