Yolk-Shell MnO@ZnMn2O4/N-C Nanorods Derived from α-MnO2/ZIF-8 as Anode Materials for Lithium Ion Batteries

Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2016-10, Vol.12 (40), p.5564-5571
Hauptverfasser: Zhong, Ming, Yang, Donghui, Xie, Chenchao, Zhang, Zhang, Zhou, Zhen, Bu, Xian-He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5571
container_issue 40
container_start_page 5564
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 12
creator Zhong, Ming
Yang, Donghui
Xie, Chenchao
Zhang, Zhang
Zhou, Zhen
Bu, Xian-He
description Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g−1 at 50 mA g−1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g−1 at 1000 mAg−1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size. A one‐step carbonizing strategy is applied to prepare yolk–shell MnO@ZnMn2O4/N–C nanorods for lithium ion batteries. The predominant electrochemical performance originates from the unique yolk–shell nanorod structure and the coating effect of N–C, which buffers volume change and provides short ion diffusion distance and direct current pathways to accelerate reaction kinetics and improve electrical conductivity.
doi_str_mv 10.1002/smll.201601959
format Article
fullrecord <record><control><sourceid>istex_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_smll_201601959_SMLL201601959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_FJNVNZ15_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2439-e45f46c21cfdf4fab42cc1bbac6d101660bed83f0156d89fa70c08c6ab2a570f3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqWwZe0LuLWdxEl2lEJLUZIuCkV0YzmOrZomMYrDT4_FRTgTqYqymhnN-0aaB8A1wSOCMR27qixHFBOGSRzEJ2BAGPEQi2h82vcEn4ML594w9gj1wwHYvdpyh1ZbVZYwrZc3mzqt6dIfZ2gKM1HbxhYO3qnGfKoC6sZW8PcHdSAdbxYzFEHh4KS2hYKpaDtKlA5q28DEtFvzUcGFreGtaA8r5S7Bme4AdfVfh-B5dv80fUDJcr6YThJkqO_FSPmB9pmkROpC-1rkPpWS5LmQrCDdewznqog8jUnAiijWIsQSR5KJnIogxNobgvh498uUas_fG1OJZs8J5gdP_OCJ9574Kk2Sfuqy6Jg1rlXffVY0O85CLwz4Szbns8dsnW1IwNfeH8FVbjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Yolk-Shell MnO@ZnMn2O4/N-C Nanorods Derived from α-MnO2/ZIF-8 as Anode Materials for Lithium Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhong, Ming ; Yang, Donghui ; Xie, Chenchao ; Zhang, Zhang ; Zhou, Zhen ; Bu, Xian-He</creator><creatorcontrib>Zhong, Ming ; Yang, Donghui ; Xie, Chenchao ; Zhang, Zhang ; Zhou, Zhen ; Bu, Xian-He</creatorcontrib><description>Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g−1 at 50 mA g−1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g−1 at 1000 mAg−1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size. A one‐step carbonizing strategy is applied to prepare yolk–shell MnO@ZnMn2O4/N–C nanorods for lithium ion batteries. The predominant electrochemical performance originates from the unique yolk–shell nanorod structure and the coating effect of N–C, which buffers volume change and provides short ion diffusion distance and direct current pathways to accelerate reaction kinetics and improve electrical conductivity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201601959</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>alfa-manganese oxide ; anode materials ; lithium ion batteries ; metal-organic framework ; yolk-shell nanorods</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2016-10, Vol.12 (40), p.5564-5571</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201601959$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201601959$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Yang, Donghui</creatorcontrib><creatorcontrib>Xie, Chenchao</creatorcontrib><creatorcontrib>Zhang, Zhang</creatorcontrib><creatorcontrib>Zhou, Zhen</creatorcontrib><creatorcontrib>Bu, Xian-He</creatorcontrib><title>Yolk-Shell MnO@ZnMn2O4/N-C Nanorods Derived from α-MnO2/ZIF-8 as Anode Materials for Lithium Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g−1 at 50 mA g−1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g−1 at 1000 mAg−1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size. A one‐step carbonizing strategy is applied to prepare yolk–shell MnO@ZnMn2O4/N–C nanorods for lithium ion batteries. The predominant electrochemical performance originates from the unique yolk–shell nanorod structure and the coating effect of N–C, which buffers volume change and provides short ion diffusion distance and direct current pathways to accelerate reaction kinetics and improve electrical conductivity.</description><subject>alfa-manganese oxide</subject><subject>anode materials</subject><subject>lithium ion batteries</subject><subject>metal-organic framework</subject><subject>yolk-shell nanorods</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQRi0EEqWwZe0LuLWdxEl2lEJLUZIuCkV0YzmOrZomMYrDT4_FRTgTqYqymhnN-0aaB8A1wSOCMR27qixHFBOGSRzEJ2BAGPEQi2h82vcEn4ML594w9gj1wwHYvdpyh1ZbVZYwrZc3mzqt6dIfZ2gKM1HbxhYO3qnGfKoC6sZW8PcHdSAdbxYzFEHh4KS2hYKpaDtKlA5q28DEtFvzUcGFreGtaA8r5S7Bme4AdfVfh-B5dv80fUDJcr6YThJkqO_FSPmB9pmkROpC-1rkPpWS5LmQrCDdewznqog8jUnAiijWIsQSR5KJnIogxNobgvh498uUas_fG1OJZs8J5gdP_OCJ9574Kk2Sfuqy6Jg1rlXffVY0O85CLwz4Szbns8dsnW1IwNfeH8FVbjQ</recordid><startdate>20161026</startdate><enddate>20161026</enddate><creator>Zhong, Ming</creator><creator>Yang, Donghui</creator><creator>Xie, Chenchao</creator><creator>Zhang, Zhang</creator><creator>Zhou, Zhen</creator><creator>Bu, Xian-He</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>20161026</creationdate><title>Yolk-Shell MnO@ZnMn2O4/N-C Nanorods Derived from α-MnO2/ZIF-8 as Anode Materials for Lithium Ion Batteries</title><author>Zhong, Ming ; Yang, Donghui ; Xie, Chenchao ; Zhang, Zhang ; Zhou, Zhen ; Bu, Xian-He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2439-e45f46c21cfdf4fab42cc1bbac6d101660bed83f0156d89fa70c08c6ab2a570f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>alfa-manganese oxide</topic><topic>anode materials</topic><topic>lithium ion batteries</topic><topic>metal-organic framework</topic><topic>yolk-shell nanorods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Yang, Donghui</creatorcontrib><creatorcontrib>Xie, Chenchao</creatorcontrib><creatorcontrib>Zhang, Zhang</creatorcontrib><creatorcontrib>Zhou, Zhen</creatorcontrib><creatorcontrib>Bu, Xian-He</creatorcontrib><collection>Istex</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Ming</au><au>Yang, Donghui</au><au>Xie, Chenchao</au><au>Zhang, Zhang</au><au>Zhou, Zhen</au><au>Bu, Xian-He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yolk-Shell MnO@ZnMn2O4/N-C Nanorods Derived from α-MnO2/ZIF-8 as Anode Materials for Lithium Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2016-10-26</date><risdate>2016</risdate><volume>12</volume><issue>40</issue><spage>5564</spage><epage>5571</epage><pages>5564-5571</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g−1 at 50 mA g−1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g−1 at 1000 mAg−1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size. A one‐step carbonizing strategy is applied to prepare yolk–shell MnO@ZnMn2O4/N–C nanorods for lithium ion batteries. The predominant electrochemical performance originates from the unique yolk–shell nanorod structure and the coating effect of N–C, which buffers volume change and provides short ion diffusion distance and direct current pathways to accelerate reaction kinetics and improve electrical conductivity.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/smll.201601959</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2016-10, Vol.12 (40), p.5564-5571
issn 1613-6810
1613-6829
language eng
recordid cdi_wiley_primary_10_1002_smll_201601959_SMLL201601959
source Wiley Online Library Journals Frontfile Complete
subjects alfa-manganese oxide
anode materials
lithium ion batteries
metal-organic framework
yolk-shell nanorods
title Yolk-Shell MnO@ZnMn2O4/N-C Nanorods Derived from α-MnO2/ZIF-8 as Anode Materials for Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yolk-Shell%20MnO@ZnMn2O4/N-C%20Nanorods%20Derived%20from%20%CE%B1-MnO2/ZIF-8%20as%20Anode%20Materials%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhong,%20Ming&rft.date=2016-10-26&rft.volume=12&rft.issue=40&rft.spage=5564&rft.epage=5571&rft.pages=5564-5571&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201601959&rft_dat=%3Cistex_wiley%3Eark_67375_WNG_FJNVNZ15_V%3C/istex_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true