Inhibition of Yeast Hexokinase by Acyl Glucosides of Phloretin and its Implication in the Warburg Effect

Contrary to differentiated cells, cancer cells predominantly convert glucose to lactate even under conditions of adequate oxygen supply (“Warburg effect”). The initial enzyme implicated in this route is hexokinase, which transforms D‐glucose into D‐glucose‐6‐phosphate. We proposed the use of differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemistrySelect (Weinheim) 2024-08, Vol.9 (32), p.n/a
Hauptverfasser: Cervantes, Fadia V., Fernandez‐Arrojo, Lucía, Coscolin, Cristina, Berrojo, Alicia, Gonzalez‐Alfonso, José L., Perez de la Lastra, José M., Ferrer, Manuel, Curieses‐Andres, Celia M., Andres‐Juan, Celia, Ballesteros, Antonio O., Perez‐Lebeña, Eduardo, Plou, Francisco J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title ChemistrySelect (Weinheim)
container_volume 9
creator Cervantes, Fadia V.
Fernandez‐Arrojo, Lucía
Coscolin, Cristina
Berrojo, Alicia
Gonzalez‐Alfonso, José L.
Perez de la Lastra, José M.
Ferrer, Manuel
Curieses‐Andres, Celia M.
Andres‐Juan, Celia
Ballesteros, Antonio O.
Perez‐Lebeña, Eduardo
Plou, Francisco J.
description Contrary to differentiated cells, cancer cells predominantly convert glucose to lactate even under conditions of adequate oxygen supply (“Warburg effect”). The initial enzyme implicated in this route is hexokinase, which transforms D‐glucose into D‐glucose‐6‐phosphate. We proposed the use of different polyphenols (resveratrol, epigallocatechin gallate, pterostilbene, phloretin) and their derivatives (α‐glucosides and acylated α‐glucosides) to inhibit this enzyme. For this study, we used Saccharomyces cerevisiae hexokinase, whose two isoforms show high resemblance at the active site with human hexokinase HK2. To monitor the reactions, a method of anion‐exchange chromatography coupled with pulsed amperometric detection (HPAEC‐PAD) was developed. Remarkably, most of the assayed compounds inhibited the enzyme more than 50 % in the standard assay. Among them, phloretin 4’‐O‐(6’’‐O‐octanoyl)‐α‐D‐glucopyranoside showed the highest inhibition and was studied in depth to determine the inhibition pattern and inhibition constant. The Ki for glucose was calculated to be 22.1±0.4 μM. Computational models of inhibition were carried out with the three molecules displaying the highest inhibition, and correlated adequately with the observed inhibitory effects on the enzyme. The inhibitory effect of several of the assayed polyphenols on hexokinase and their lack of toxicity renders them promising candidates as adjuvant drugs for cancer therapy. We examined the inhibitory effect of various polyphenols and their glucosylated or acylated derivatives on yeast hexokinase. Our study revealed a notable alignment between inhibition data and computational predictions. Given the striking similarity in the active sites of yeast and human hexokinases, these compounds emerge as promising candidates for adjunctive pharmaceuticals targeting the enzymes associated with the “Warburg effect,” found in certain cancer types.
doi_str_mv 10.1002/slct.202401086
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_wiley_primary_10_1002_slct_202401086_SLCT202401086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SLCT202401086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2146-39b847e8b300f13d9a8aef7b515ce39d8aba319072ba7357c6a89b7f0820dc253</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOOaunvMPdH5J2vw4jjG3QUHBiXgqSZrYaNeOpkP737s5UW-evpeP93kPD0LXBKYEgN7E2vZTCjQFApKfoRFlPEt4lqrzP_kSTWJ8BQDCJaeZGKFq3VTBhD60DW49fnY69njlPtq30OjosBnwzA41XtZ728ZQunis3Vd127k-NFg3JQ59xOvtrg5Wf-0c3n3l8JPuzL57wQvvne2v0IXXdXST7ztGj7eLzXyV5HfL9XyWJ5aSlCdMGZkKJw0D8ISVSkvtvDAZyaxjqpTaaEYUCGq0YJmwXEtlhAdJobQ0Y2M0Pe3aro2xc77YdWGru6EgUBxVFUdVxY-qA6BOwHuo3fBPu3jI55tf9hOFaW5e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inhibition of Yeast Hexokinase by Acyl Glucosides of Phloretin and its Implication in the Warburg Effect</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cervantes, Fadia V. ; Fernandez‐Arrojo, Lucía ; Coscolin, Cristina ; Berrojo, Alicia ; Gonzalez‐Alfonso, José L. ; Perez de la Lastra, José M. ; Ferrer, Manuel ; Curieses‐Andres, Celia M. ; Andres‐Juan, Celia ; Ballesteros, Antonio O. ; Perez‐Lebeña, Eduardo ; Plou, Francisco J.</creator><creatorcontrib>Cervantes, Fadia V. ; Fernandez‐Arrojo, Lucía ; Coscolin, Cristina ; Berrojo, Alicia ; Gonzalez‐Alfonso, José L. ; Perez de la Lastra, José M. ; Ferrer, Manuel ; Curieses‐Andres, Celia M. ; Andres‐Juan, Celia ; Ballesteros, Antonio O. ; Perez‐Lebeña, Eduardo ; Plou, Francisco J.</creatorcontrib><description>Contrary to differentiated cells, cancer cells predominantly convert glucose to lactate even under conditions of adequate oxygen supply (“Warburg effect”). The initial enzyme implicated in this route is hexokinase, which transforms D‐glucose into D‐glucose‐6‐phosphate. We proposed the use of different polyphenols (resveratrol, epigallocatechin gallate, pterostilbene, phloretin) and their derivatives (α‐glucosides and acylated α‐glucosides) to inhibit this enzyme. For this study, we used Saccharomyces cerevisiae hexokinase, whose two isoforms show high resemblance at the active site with human hexokinase HK2. To monitor the reactions, a method of anion‐exchange chromatography coupled with pulsed amperometric detection (HPAEC‐PAD) was developed. Remarkably, most of the assayed compounds inhibited the enzyme more than 50 % in the standard assay. Among them, phloretin 4’‐O‐(6’’‐O‐octanoyl)‐α‐D‐glucopyranoside showed the highest inhibition and was studied in depth to determine the inhibition pattern and inhibition constant. The Ki for glucose was calculated to be 22.1±0.4 μM. Computational models of inhibition were carried out with the three molecules displaying the highest inhibition, and correlated adequately with the observed inhibitory effects on the enzyme. The inhibitory effect of several of the assayed polyphenols on hexokinase and their lack of toxicity renders them promising candidates as adjuvant drugs for cancer therapy. We examined the inhibitory effect of various polyphenols and their glucosylated or acylated derivatives on yeast hexokinase. Our study revealed a notable alignment between inhibition data and computational predictions. Given the striking similarity in the active sites of yeast and human hexokinases, these compounds emerge as promising candidates for adjunctive pharmaceuticals targeting the enzymes associated with the “Warburg effect,” found in certain cancer types.</description><identifier>ISSN: 2365-6549</identifier><identifier>EISSN: 2365-6549</identifier><identifier>DOI: 10.1002/slct.202401086</identifier><language>eng</language><subject>Flavonoids ; Glycolysis ; Hexokinase ; Phloretin ; Warburg effect</subject><ispartof>ChemistrySelect (Weinheim), 2024-08, Vol.9 (32), p.n/a</ispartof><rights>2024 The Authors. ChemistrySelect published by Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2146-39b847e8b300f13d9a8aef7b515ce39d8aba319072ba7357c6a89b7f0820dc253</cites><orcidid>0000-0003-4731-6398 ; 0000-0002-3396-7985 ; 0000-0002-1967-2056 ; 0000-0003-4962-4714 ; 0000-0002-5335-8175 ; 0000-0002-2117-8911 ; 0000-0002-1655-9859 ; 0000-0003-0831-893X ; 0000-0001-8844-8392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fslct.202401086$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fslct.202401086$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Cervantes, Fadia V.</creatorcontrib><creatorcontrib>Fernandez‐Arrojo, Lucía</creatorcontrib><creatorcontrib>Coscolin, Cristina</creatorcontrib><creatorcontrib>Berrojo, Alicia</creatorcontrib><creatorcontrib>Gonzalez‐Alfonso, José L.</creatorcontrib><creatorcontrib>Perez de la Lastra, José M.</creatorcontrib><creatorcontrib>Ferrer, Manuel</creatorcontrib><creatorcontrib>Curieses‐Andres, Celia M.</creatorcontrib><creatorcontrib>Andres‐Juan, Celia</creatorcontrib><creatorcontrib>Ballesteros, Antonio O.</creatorcontrib><creatorcontrib>Perez‐Lebeña, Eduardo</creatorcontrib><creatorcontrib>Plou, Francisco J.</creatorcontrib><title>Inhibition of Yeast Hexokinase by Acyl Glucosides of Phloretin and its Implication in the Warburg Effect</title><title>ChemistrySelect (Weinheim)</title><description>Contrary to differentiated cells, cancer cells predominantly convert glucose to lactate even under conditions of adequate oxygen supply (“Warburg effect”). The initial enzyme implicated in this route is hexokinase, which transforms D‐glucose into D‐glucose‐6‐phosphate. We proposed the use of different polyphenols (resveratrol, epigallocatechin gallate, pterostilbene, phloretin) and their derivatives (α‐glucosides and acylated α‐glucosides) to inhibit this enzyme. For this study, we used Saccharomyces cerevisiae hexokinase, whose two isoforms show high resemblance at the active site with human hexokinase HK2. To monitor the reactions, a method of anion‐exchange chromatography coupled with pulsed amperometric detection (HPAEC‐PAD) was developed. Remarkably, most of the assayed compounds inhibited the enzyme more than 50 % in the standard assay. Among them, phloretin 4’‐O‐(6’’‐O‐octanoyl)‐α‐D‐glucopyranoside showed the highest inhibition and was studied in depth to determine the inhibition pattern and inhibition constant. The Ki for glucose was calculated to be 22.1±0.4 μM. Computational models of inhibition were carried out with the three molecules displaying the highest inhibition, and correlated adequately with the observed inhibitory effects on the enzyme. The inhibitory effect of several of the assayed polyphenols on hexokinase and their lack of toxicity renders them promising candidates as adjuvant drugs for cancer therapy. We examined the inhibitory effect of various polyphenols and their glucosylated or acylated derivatives on yeast hexokinase. Our study revealed a notable alignment between inhibition data and computational predictions. Given the striking similarity in the active sites of yeast and human hexokinases, these compounds emerge as promising candidates for adjunctive pharmaceuticals targeting the enzymes associated with the “Warburg effect,” found in certain cancer types.</description><subject>Flavonoids</subject><subject>Glycolysis</subject><subject>Hexokinase</subject><subject>Phloretin</subject><subject>Warburg effect</subject><issn>2365-6549</issn><issn>2365-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAYhoMoOOaunvMPdH5J2vw4jjG3QUHBiXgqSZrYaNeOpkP737s5UW-evpeP93kPD0LXBKYEgN7E2vZTCjQFApKfoRFlPEt4lqrzP_kSTWJ8BQDCJaeZGKFq3VTBhD60DW49fnY69njlPtq30OjosBnwzA41XtZ728ZQunis3Vd127k-NFg3JQ59xOvtrg5Wf-0c3n3l8JPuzL57wQvvne2v0IXXdXST7ztGj7eLzXyV5HfL9XyWJ5aSlCdMGZkKJw0D8ISVSkvtvDAZyaxjqpTaaEYUCGq0YJmwXEtlhAdJobQ0Y2M0Pe3aro2xc77YdWGru6EgUBxVFUdVxY-qA6BOwHuo3fBPu3jI55tf9hOFaW5e</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Cervantes, Fadia V.</creator><creator>Fernandez‐Arrojo, Lucía</creator><creator>Coscolin, Cristina</creator><creator>Berrojo, Alicia</creator><creator>Gonzalez‐Alfonso, José L.</creator><creator>Perez de la Lastra, José M.</creator><creator>Ferrer, Manuel</creator><creator>Curieses‐Andres, Celia M.</creator><creator>Andres‐Juan, Celia</creator><creator>Ballesteros, Antonio O.</creator><creator>Perez‐Lebeña, Eduardo</creator><creator>Plou, Francisco J.</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4731-6398</orcidid><orcidid>https://orcid.org/0000-0002-3396-7985</orcidid><orcidid>https://orcid.org/0000-0002-1967-2056</orcidid><orcidid>https://orcid.org/0000-0003-4962-4714</orcidid><orcidid>https://orcid.org/0000-0002-5335-8175</orcidid><orcidid>https://orcid.org/0000-0002-2117-8911</orcidid><orcidid>https://orcid.org/0000-0002-1655-9859</orcidid><orcidid>https://orcid.org/0000-0003-0831-893X</orcidid><orcidid>https://orcid.org/0000-0001-8844-8392</orcidid></search><sort><creationdate>20240827</creationdate><title>Inhibition of Yeast Hexokinase by Acyl Glucosides of Phloretin and its Implication in the Warburg Effect</title><author>Cervantes, Fadia V. ; Fernandez‐Arrojo, Lucía ; Coscolin, Cristina ; Berrojo, Alicia ; Gonzalez‐Alfonso, José L. ; Perez de la Lastra, José M. ; Ferrer, Manuel ; Curieses‐Andres, Celia M. ; Andres‐Juan, Celia ; Ballesteros, Antonio O. ; Perez‐Lebeña, Eduardo ; Plou, Francisco J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2146-39b847e8b300f13d9a8aef7b515ce39d8aba319072ba7357c6a89b7f0820dc253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Flavonoids</topic><topic>Glycolysis</topic><topic>Hexokinase</topic><topic>Phloretin</topic><topic>Warburg effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cervantes, Fadia V.</creatorcontrib><creatorcontrib>Fernandez‐Arrojo, Lucía</creatorcontrib><creatorcontrib>Coscolin, Cristina</creatorcontrib><creatorcontrib>Berrojo, Alicia</creatorcontrib><creatorcontrib>Gonzalez‐Alfonso, José L.</creatorcontrib><creatorcontrib>Perez de la Lastra, José M.</creatorcontrib><creatorcontrib>Ferrer, Manuel</creatorcontrib><creatorcontrib>Curieses‐Andres, Celia M.</creatorcontrib><creatorcontrib>Andres‐Juan, Celia</creatorcontrib><creatorcontrib>Ballesteros, Antonio O.</creatorcontrib><creatorcontrib>Perez‐Lebeña, Eduardo</creatorcontrib><creatorcontrib>Plou, Francisco J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>ChemistrySelect (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cervantes, Fadia V.</au><au>Fernandez‐Arrojo, Lucía</au><au>Coscolin, Cristina</au><au>Berrojo, Alicia</au><au>Gonzalez‐Alfonso, José L.</au><au>Perez de la Lastra, José M.</au><au>Ferrer, Manuel</au><au>Curieses‐Andres, Celia M.</au><au>Andres‐Juan, Celia</au><au>Ballesteros, Antonio O.</au><au>Perez‐Lebeña, Eduardo</au><au>Plou, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Yeast Hexokinase by Acyl Glucosides of Phloretin and its Implication in the Warburg Effect</atitle><jtitle>ChemistrySelect (Weinheim)</jtitle><date>2024-08-27</date><risdate>2024</risdate><volume>9</volume><issue>32</issue><epage>n/a</epage><issn>2365-6549</issn><eissn>2365-6549</eissn><abstract>Contrary to differentiated cells, cancer cells predominantly convert glucose to lactate even under conditions of adequate oxygen supply (“Warburg effect”). The initial enzyme implicated in this route is hexokinase, which transforms D‐glucose into D‐glucose‐6‐phosphate. We proposed the use of different polyphenols (resveratrol, epigallocatechin gallate, pterostilbene, phloretin) and their derivatives (α‐glucosides and acylated α‐glucosides) to inhibit this enzyme. For this study, we used Saccharomyces cerevisiae hexokinase, whose two isoforms show high resemblance at the active site with human hexokinase HK2. To monitor the reactions, a method of anion‐exchange chromatography coupled with pulsed amperometric detection (HPAEC‐PAD) was developed. Remarkably, most of the assayed compounds inhibited the enzyme more than 50 % in the standard assay. Among them, phloretin 4’‐O‐(6’’‐O‐octanoyl)‐α‐D‐glucopyranoside showed the highest inhibition and was studied in depth to determine the inhibition pattern and inhibition constant. The Ki for glucose was calculated to be 22.1±0.4 μM. Computational models of inhibition were carried out with the three molecules displaying the highest inhibition, and correlated adequately with the observed inhibitory effects on the enzyme. The inhibitory effect of several of the assayed polyphenols on hexokinase and their lack of toxicity renders them promising candidates as adjuvant drugs for cancer therapy. We examined the inhibitory effect of various polyphenols and their glucosylated or acylated derivatives on yeast hexokinase. Our study revealed a notable alignment between inhibition data and computational predictions. Given the striking similarity in the active sites of yeast and human hexokinases, these compounds emerge as promising candidates for adjunctive pharmaceuticals targeting the enzymes associated with the “Warburg effect,” found in certain cancer types.</abstract><doi>10.1002/slct.202401086</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4731-6398</orcidid><orcidid>https://orcid.org/0000-0002-3396-7985</orcidid><orcidid>https://orcid.org/0000-0002-1967-2056</orcidid><orcidid>https://orcid.org/0000-0003-4962-4714</orcidid><orcidid>https://orcid.org/0000-0002-5335-8175</orcidid><orcidid>https://orcid.org/0000-0002-2117-8911</orcidid><orcidid>https://orcid.org/0000-0002-1655-9859</orcidid><orcidid>https://orcid.org/0000-0003-0831-893X</orcidid><orcidid>https://orcid.org/0000-0001-8844-8392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-6549
ispartof ChemistrySelect (Weinheim), 2024-08, Vol.9 (32), p.n/a
issn 2365-6549
2365-6549
language eng
recordid cdi_wiley_primary_10_1002_slct_202401086_SLCT202401086
source Wiley Online Library Journals Frontfile Complete
subjects Flavonoids
Glycolysis
Hexokinase
Phloretin
Warburg effect
title Inhibition of Yeast Hexokinase by Acyl Glucosides of Phloretin and its Implication in the Warburg Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Yeast%20Hexokinase%20by%20Acyl%20Glucosides%20of%20Phloretin%20and%20its%20Implication%20in%20the%20Warburg%20Effect&rft.jtitle=ChemistrySelect%20(Weinheim)&rft.au=Cervantes,%20Fadia%20V.&rft.date=2024-08-27&rft.volume=9&rft.issue=32&rft.epage=n/a&rft.issn=2365-6549&rft.eissn=2365-6549&rft_id=info:doi/10.1002/slct.202401086&rft_dat=%3Cwiley_cross%3ESLCT202401086%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true