Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr)

High‐entropy metal diborides (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are a new class of ultrahigh temperature ceramics. The novel structural, mechanical, and electronic properties of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied within density functional theory, with the compositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2018-08, Vol.255 (8), p.n/a
Hauptverfasser: Wang, Ya‐Ping, Gan, Guo‐Yong, Wang, Wei, Yang, Yan, Tang, Bi‐Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title physica status solidi (b)
container_volume 255
creator Wang, Ya‐Ping
Gan, Guo‐Yong
Wang, Wei
Yang, Yan
Tang, Bi‐Yu
description High‐entropy metal diborides (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are a new class of ultrahigh temperature ceramics. The novel structural, mechanical, and electronic properties of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied within density functional theory, with the compositional disorder being treated using the special quasi‐random structures technique. The elastic stiffness constants Cij, as well as bulk, shear and Young's modulus of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied to estimate the mechanical properties. The ductility is also investigated from several criterions, showing that (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) is still intrinsically brittle. The high Debye temperature of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) indicates the strong interatomic interactions and good thermal conductivity. The detailed investigations of electronic structure reveal that covalent and metallic bonds are respectively formed in the boron layer and the metal layer, mixed ionic and covalent bonds are formed between the metals and boron interlayer. The high‐entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are stable thermodynamically and mechanically. The elastic modulus follows the mixing rule. (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) possess higher Debye temperature. They exhibit a combination of metallic, covalent and ionic bonding. Mechanical properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 are more excellent than (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Mo, Cr).
doi_str_mv 10.1002/pssb.201800011
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_pssb_201800011_PSSB201800011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201800011</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1481-c73fe462f94223603db0150bbdeac2c5effc6393a155546189c01dfad82423f43</originalsourceid><addsrcrecordid>eNo9kL9OwzAQxi0EEqWwMntsJVJ8dv4ODG1UaKUGKrVdWCLHsalRmkROEOrWlY034N36JDgCdbjv7n767oYPoVsgIyCE3tdNk40ogZAQAnCGeuBRcFjkwTnqERYQB6KAXqKrpnm3lgAY9NDPOMPzUre6wksjcy3sVOJK4USKLS-14AXmZY6nhRStqSywvqqWptWy6XybojV8q9-2eC13lvP2w0g8s-B4-J6W9qbe49jynRYNHswUGdFXY2XNrSTdoK0MJxQPkuPh68HWc3aHk-oOx2Z4jS4ULxp589_7aPM4XcczZ_HyNI_HC6cGNwRHBExJ16cqcillPmF5RsAjWZZLLqjwpFLCZxHj4Hme60MYCQK54nlIXcqUy_oo-vv7qQu5T2ujd9zsUyBpl23aZZuesk2Xq9XktLFf9rdwiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Ya‐Ping ; Gan, Guo‐Yong ; Wang, Wei ; Yang, Yan ; Tang, Bi‐Yu</creator><creatorcontrib>Wang, Ya‐Ping ; Gan, Guo‐Yong ; Wang, Wei ; Yang, Yan ; Tang, Bi‐Yu</creatorcontrib><description>High‐entropy metal diborides (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are a new class of ultrahigh temperature ceramics. The novel structural, mechanical, and electronic properties of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied within density functional theory, with the compositional disorder being treated using the special quasi‐random structures technique. The elastic stiffness constants Cij, as well as bulk, shear and Young's modulus of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied to estimate the mechanical properties. The ductility is also investigated from several criterions, showing that (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) is still intrinsically brittle. The high Debye temperature of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) indicates the strong interatomic interactions and good thermal conductivity. The detailed investigations of electronic structure reveal that covalent and metallic bonds are respectively formed in the boron layer and the metal layer, mixed ionic and covalent bonds are formed between the metals and boron interlayer. The high‐entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are stable thermodynamically and mechanically. The elastic modulus follows the mixing rule. (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) possess higher Debye temperature. They exhibit a combination of metallic, covalent and ionic bonding. Mechanical properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 are more excellent than (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Mo, Cr).</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201800011</identifier><language>eng</language><subject>density functional theory ; electronic structure ; high‐entropy ceramics ; mechanical properties</subject><ispartof>physica status solidi (b), 2018-08, Vol.255 (8), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201800011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201800011$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Ya‐Ping</creatorcontrib><creatorcontrib>Gan, Guo‐Yong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Tang, Bi‐Yu</creatorcontrib><title>Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr)</title><title>physica status solidi (b)</title><description>High‐entropy metal diborides (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are a new class of ultrahigh temperature ceramics. The novel structural, mechanical, and electronic properties of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied within density functional theory, with the compositional disorder being treated using the special quasi‐random structures technique. The elastic stiffness constants Cij, as well as bulk, shear and Young's modulus of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied to estimate the mechanical properties. The ductility is also investigated from several criterions, showing that (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) is still intrinsically brittle. The high Debye temperature of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) indicates the strong interatomic interactions and good thermal conductivity. The detailed investigations of electronic structure reveal that covalent and metallic bonds are respectively formed in the boron layer and the metal layer, mixed ionic and covalent bonds are formed between the metals and boron interlayer. The high‐entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are stable thermodynamically and mechanically. The elastic modulus follows the mixing rule. (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) possess higher Debye temperature. They exhibit a combination of metallic, covalent and ionic bonding. Mechanical properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 are more excellent than (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Mo, Cr).</description><subject>density functional theory</subject><subject>electronic structure</subject><subject>high‐entropy ceramics</subject><subject>mechanical properties</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kL9OwzAQxi0EEqWwMntsJVJ8dv4ODG1UaKUGKrVdWCLHsalRmkROEOrWlY034N36JDgCdbjv7n767oYPoVsgIyCE3tdNk40ogZAQAnCGeuBRcFjkwTnqERYQB6KAXqKrpnm3lgAY9NDPOMPzUre6wksjcy3sVOJK4USKLS-14AXmZY6nhRStqSywvqqWptWy6XybojV8q9-2eC13lvP2w0g8s-B4-J6W9qbe49jynRYNHswUGdFXY2XNrSTdoK0MJxQPkuPh68HWc3aHk-oOx2Z4jS4ULxp589_7aPM4XcczZ_HyNI_HC6cGNwRHBExJ16cqcillPmF5RsAjWZZLLqjwpFLCZxHj4Hme60MYCQK54nlIXcqUy_oo-vv7qQu5T2ujd9zsUyBpl23aZZuesk2Xq9XktLFf9rdwiA</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Wang, Ya‐Ping</creator><creator>Gan, Guo‐Yong</creator><creator>Wang, Wei</creator><creator>Yang, Yan</creator><creator>Tang, Bi‐Yu</creator><scope/></search><sort><creationdate>201808</creationdate><title>Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr)</title><author>Wang, Ya‐Ping ; Gan, Guo‐Yong ; Wang, Wei ; Yang, Yan ; Tang, Bi‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1481-c73fe462f94223603db0150bbdeac2c5effc6393a155546189c01dfad82423f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>density functional theory</topic><topic>electronic structure</topic><topic>high‐entropy ceramics</topic><topic>mechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ya‐Ping</creatorcontrib><creatorcontrib>Gan, Guo‐Yong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Tang, Bi‐Yu</creatorcontrib><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ya‐Ping</au><au>Gan, Guo‐Yong</au><au>Wang, Wei</au><au>Yang, Yan</au><au>Tang, Bi‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr)</atitle><jtitle>physica status solidi (b)</jtitle><date>2018-08</date><risdate>2018</risdate><volume>255</volume><issue>8</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>High‐entropy metal diborides (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are a new class of ultrahigh temperature ceramics. The novel structural, mechanical, and electronic properties of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied within density functional theory, with the compositional disorder being treated using the special quasi‐random structures technique. The elastic stiffness constants Cij, as well as bulk, shear and Young's modulus of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are studied to estimate the mechanical properties. The ductility is also investigated from several criterions, showing that (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) is still intrinsically brittle. The high Debye temperature of (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) indicates the strong interatomic interactions and good thermal conductivity. The detailed investigations of electronic structure reveal that covalent and metallic bonds are respectively formed in the boron layer and the metal layer, mixed ionic and covalent bonds are formed between the metals and boron interlayer. The high‐entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) are stable thermodynamically and mechanically. The elastic modulus follows the mixing rule. (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) possess higher Debye temperature. They exhibit a combination of metallic, covalent and ionic bonding. Mechanical properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 are more excellent than (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Mo, Cr).</abstract><doi>10.1002/pssb.201800011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2018-08, Vol.255 (8), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_wiley_primary_10_1002_pssb_201800011_PSSB201800011
source Wiley Online Library Journals Frontfile Complete
subjects density functional theory
electronic structure
high‐entropy ceramics
mechanical properties
title Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20Initio%20Prediction%20of%20Mechanical%20and%20Electronic%20Properties%20of%20Ultrahigh%20Temperature%20High%E2%80%90Entropy%20Ceramics%20(Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2%20(M%E2%80%89=%E2%80%89Nb,%20Mo,%20Cr)&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Wang,%20Ya%E2%80%90Ping&rft.date=2018-08&rft.volume=255&rft.issue=8&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201800011&rft_dat=%3Cwiley%3EPSSB201800011%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true